如何测试“int"类型列表中的每个项目是否?

How to test if every item in a list of type #39;int#39;?(如何测试“int类型列表中的每个项目是否?)
本文介绍了如何测试“int"类型列表中的每个项目是否?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

假设我有一个数字列表.我将如何检查列表中的每个项目都是 int?
我四处搜寻,但找不到任何关于此的东西.

Say I have a list of numbers. How would I do to check that every item in the list is an int?
I have searched around, but haven't been able to find anything on this.

for i in myList:
  result=isinstance(i, int)
  if result == False:
    break

会起作用,但在我看来,它看起来很丑陋且不符合标准.
有没有更好(和更pythonic)的方法来做到这一点?

would work, but looks very ugly and unpythonic in my opinion.
Is there any better(and more pythonic) way of doing this?

推荐答案

>>> my_list = [1, 2, 3.25]
>>> all(isinstance(item, int) for item in my_list)
False

>>> other_list = range(3)
>>> all(isinstance(item, int) for item in other_list)
True
>>> 

这篇关于如何测试“int"类型列表中的每个项目是否?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)