将 YAML 文件转换为 Python JSON 对象

Converting a YAML file to Python JSON object(将 YAML 文件转换为 Python JSON 对象)
本文介绍了将 YAML 文件转换为 Python JSON 对象的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

如何加载 YAML 文件并将其转换为 Python JSON 对象?

How can I load a YAML file and convert it to a Python JSON object?

我的 YAML 文件如下所示:

My YAML file looks like this:

Section:
    heading: Heading 1
    font: 
        name: Times New Roman
        size: 22
        color_theme: ACCENT_2

SubSection:
    heading: Heading 3
    font:
        name: Times New Roman
        size: 15
        color_theme: ACCENT_2
Paragraph:
    font:
        name: Times New Roman
        size: 11
        color_theme: ACCENT_2
Table:
    style: MediumGrid3-Accent2

推荐答案

你可以使用PyYAMLp>

you can use PyYAML

pip install PyYAML

在 ipython 控制台中:

And in the ipython console:

In [1]: import yaml

In [2]: document = """Section:
   ...:     heading: Heading 1
   ...:     font: 
   ...:         name: Times New Roman
   ...:         size: 22
   ...:         color_theme: ACCENT_2
   ...: 
   ...: SubSection:
   ...:     heading: Heading 3
   ...:     font:
   ...:         name: Times New Roman
   ...:         size: 15
   ...:         color_theme: ACCENT_2
   ...: Paragraph:
   ...:     font:
   ...:         name: Times New Roman
   ...:         size: 11
   ...:         color_theme: ACCENT_2
   ...: Table:
   ...:     style: MediumGrid3-Accent2"""
   ...:     

In [3]: yaml.load(document)
Out[3]: 
{'Paragraph': {'font': {'color_theme': 'ACCENT_2',
   'name': 'Times New Roman',
   'size': 11}},
 'Section': {'font': {'color_theme': 'ACCENT_2',
   'name': 'Times New Roman',
   'size': 22},
  'heading': 'Heading 1'},
 'SubSection': {'font': {'color_theme': 'ACCENT_2',
   'name': 'Times New Roman',
   'size': 15},
  'heading': 'Heading 3'},
 'Table': {'style': 'MediumGrid3-Accent2'}}

这篇关于将 YAML 文件转换为 Python JSON 对象的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)