jinja2 嵌套变量

jinja2 nested variables(jinja2 嵌套变量)
本文介绍了jinja2 嵌套变量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

I am currently learning jinja2 and i am unsure on how to address variables the correct way:

Here are my variables in yaml:

---
hosts:
   app201.acme.com: {eth0: {ip: 46.0.0.1, netmask: 255.255.255.255}}
   graphite.acme.com: {eth0: {ip: 46.0.0.2, netmask: 255.255.255.255},
                       eth0.1: {ip: 10.2.90.1, netmask: 255.255.255.255}}

and here the jinja2 template:

{{ fqdn }}
{% for interface in hosts[fqdn] %}
    {{ interface }}
    {{ hosts[fqdn].interface.ip }} << doesn't work
    {{ hosts[fqdn].{{ interface }}.ip }} << doesn't work
    {{ interface.ip }} << doesn't work
{% endfor %}

so currently my output looks like this since I can't access second dimension of yaml hash.

graphite.acme.com eth0.1

eth0

解决方案

The variable hosts is a dict. The correct way to access values in dict is to use [] operator.

{{ fqdn }}
{% for interface in hosts[fqdn] %}
    {{ interface }}
    {{ hosts[fqdn][interface]['ip'] }}
{% endfor %}

. operator is used to access attribute of an object.

这篇关于jinja2 嵌套变量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)