如何在 Python 3.5 中键入提示属性?

How can I type hint an attribute in Python 3.5?(如何在 Python 3.5 中键入提示属性?)
本文介绍了如何在 Python 3.5 中键入提示属性?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个类,我希望属性的初始值为 None:

I have a class where I want the initial value of an attribute to be None:

class SomeClass:
    def __init__(self):
        self.some_attribute = None

如何添加类型提示,以便 IDE 了解 some_attribute 通常属于 AnotherClass 类型?

How can I add type hinting, so that the IDE understands that some_attribute is usually of the type AnotherClass?

推荐答案

在 Python 3.5 中,你必须写

In Python 3.5, you have to write

self.some_attribute = None  # type: AnotherClass

从 Python 3.6 开始,为变量添加了新的类型提示语法(PEP 526):

Since Python 3.6, new type hinting syntax was added for variables (PEP 526):

self.some_attribute: AnotherClass = None

这可能会让每个类型检查系统都抱怨,因为 None 实际上不是 AnotherClass 的实例.相反,您可以使用 typing.Union[None, AnotherClass],或简写:

This will probably make every type-checking system complain, because None is in fact not an instance of AnotherClass. Instead, you can use typing.Union[None, AnotherClass], or the shorthand:

from typing import Optional
...
self.some_attribute: Optional[AnotherClass] = None

这篇关于如何在 Python 3.5 中键入提示属性?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)