Python 生成日期系列

Python generate dates series(Python 生成日期系列)
本文介绍了Python 生成日期系列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

如何生成具有这样日期的数组:

How can i generate array with dates like this:

从 2010.12.01 00:00:00 到 2010.12.12.30 23.59.59 的 javascript 毫秒格式的时间戳步骤 5 分钟.

Timestamps in javascript miliseconds format from 2010.12.01 00:00:00 to 2010.12.12.30 23.59.59 with step 5 minutes.

['2010.12.01 00:00:00', '2010.12.01 00:05:00','2010.12.01 00:10:00','2010.12.01 00:15:00', ...]

推荐答案

好吧,显然你从开始时间开始,循环直到你到达结束时间并在两者之间递增.

Well, obviously you start at the start time, loop until you reach the end time and increment inbetween.

import datetime

dt = datetime.datetime(2010, 12, 1)
end = datetime.datetime(2010, 12, 30, 23, 59, 59)
step = datetime.timedelta(seconds=5)

result = []

while dt < end:
    result.append(dt.strftime('%Y-%m-%d %H:%M:%S'))
    dt += step

相当琐碎.

这篇关于Python 生成日期系列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)