Python:降低精度 pandas 时间戳数据帧

Python: reduce precision pandas timestamp dataframe(Python:降低精度 pandas 时间戳数据帧)
本文介绍了Python:降低精度 pandas 时间戳数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

您好,我有以下数据框

df = 

       Record_ID       Time
        94704   2014-03-10 07:19:19.647342
        94705   2014-03-10 07:21:44.479363
        94706   2014-03-10 07:21:45.479581
        94707   2014-03-10 07:21:54.481588
        94708   2014-03-10 07:21:55.481804

有可能有以下吗?

df1 = 

       Record_ID       Time
        94704   2014-03-10 07:19:19
        94705   2014-03-10 07:21:44
        94706   2014-03-10 07:21:45
        94707   2014-03-10 07:21:54
        94708   2014-03-10 07:21:55

推荐答案

你可以转换底层 datetime64[ns] 值使用 astype 转换为 datetime64[s] 值:

You could convert the underlying datetime64[ns] values to datetime64[s] values using astype:

In [11]: df['Time'] = df['Time'].astype('datetime64[s]')

In [12]: df
Out[12]: 
   Record_ID                Time
0      94704 2014-03-10 07:19:19
1      94705 2014-03-10 07:21:44
2      94706 2014-03-10 07:21:45
3      94707 2014-03-10 07:21:54
4      94708 2014-03-10 07:21:55

请注意,由于 Pandas 系列和 DataFrames 将所有日期时间值存储为 datetime64[ns] 这些 datetime64[s] 值会自动转换回 datetime64[ns],因此最终结果仍存储为 datetime64[ns] 值,但对 astype 的调用会导致秒的小数部分被删除.

Note that since Pandas Series and DataFrames store all datetime values as datetime64[ns] these datetime64[s] values are automatically converted back to datetime64[ns], so the end result is still stored as datetime64[ns] values, but the call to astype causes the fractional part of the seconds to be removed.

如果您希望有一个 datetime64[s] 值的 NumPy 数组,您可以使用 df['Time'].values.astype('datetime64[s]').

If you wish to have a NumPy array of datetime64[s] values, you could use df['Time'].values.astype('datetime64[s]').

这篇关于Python:降低精度 pandas 时间戳数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)