python pandas TimeStamps到夏令时的本地时间字符串

python pandas TimeStamps to local time string with daylight saving(python pandas TimeStamps到夏令时的本地时间字符串)
本文介绍了python pandas TimeStamps到夏令时的本地时间字符串的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个带有 TimeStamps 列的数据框.我想将其转换为本地时间字符串,即夏令时.

I have a dataframe with a TimeStamps column. I want to convert it to strings of local time, ie with daylight saving.

所以我想将下面的 ts[0] 转换为2015-03-30 03:55:05".Pandas 似乎知道 DST,但仅当您在系列上调用 .values 时.

So I want to convert ts[0] below to "2015-03-30 03:55:05". Pandas seems to be aware of DST, but only when you call .values on the series.

谢谢

(Pdb) ts = df['TimeStamps']
(Pdb) ts
0   2015-03-30 02:55:05.993000
1   2015-03-30 03:10:20.937000
2   2015-03-30 10:09:19.947000
Name: TimeStamps, dtype: datetime64[ns]
(Pdb) ts[0]
Timestamp('2015-03-30 02:55:05.993000')
(Pdb) ts.values
array(['2015-03-30T03:55:05.993000000+0100',
   '2015-03-30T04:10:20.937000000+0100',
   '2015-03-30T11:09:19.947000000+0100'], dtype='datetime64[ns]')

推荐答案

DST 与您所在的位置相关(例如,伦敦 DST 比纽约晚几周开始).您首先需要知道时间戳时区:

DST is relative to your location (e.g. London DST began a few weeks after NY). You first need to make the timestamp timezone aware:

from pytz import UTC
from pytz import timezone
import datetime as dt

ts = pd.Timestamp(datetime.datetime(2015, 3, 31, 15, 47, 25, 901597))
# or...
ts = pd.Timestamp('2015-03-31 15:47:25.901597')
# ts is a Timestamp, but it has no idea where in the world it is...
>>> ts.tzinfo is None
True

# So the timestamp needs to be localized.  Assuming it was originally a UTC timestamp, it can be localized to UTC.
ts_utc = ts.tz_localize(UTC)
# Once localized, it can be expressed in other timezone regions, e.g.: 
eastern = pytz.timezone('US/Eastern')
ts_eastern = ts_utc.astimezone(eastern)
# And to convert it to an ISO string of local time (e.g. eastern):
>>> ts_eastern.isoformat()
'2015-03-30T08:09:27.143173-04:00'

参见 pytz 或 日期时间了解更多信息.

See pytz or datetime for more information.

这篇关于python pandas TimeStamps到夏令时的本地时间字符串的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)