如何/在哪里发布 Python 包

How/where to publish Python package(如何/在哪里发布 Python 包)
本文介绍了如何/在哪里发布 Python 包的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

如果一个人创建了一个有用的 Python 包,如何/在哪里发布/宣传它以供其他人使用?

If one creates a useful Python package, how/where does one publish/advertise it for other people to use?

我已经把它放在了 hithub 上,但几个星期后即使谷歌也找不到它.包装整洁&完成,我是为个人使用而制作的,不与他人分享会很遗憾:)

I've put it on hithub, but even Google does not find it after a few weeks. The package is neat & complete, I made it for my personal use and would be a shame not to share it with others :)

推荐答案

所以,要使包对 pip install 可用,您必须在 Python 包索引中注册它 (PyPI): https://pypi.python.org/pypi

So, to make the package available to a pip install, you have to register it in the Python Package Index (PyPI): https://pypi.python.org/pypi

还有测试环境,您可以在其中上传您的包以测试您的设置是否正常,然后再进行真正的交易:https://testpypi.python.org/pypi

There's also the test environment, where you can upload your packages to test if your setup is ok before going to the real deal: https://testpypi.python.org/pypi

您在其中一台服务器上创建了一个帐户,然后就可以上传您的包裹.但是,在此之前,您必须使用 setuptools 构建您的包.这是打包和分发的文档:https://packaging.python.org/distributing/

You create an account in one of the servers and will be able to upload your package. But, before that, you will have to build your package using setuptools. Here's the documentation for packaging and distributing: https://packaging.python.org/distributing/

这个过程可能有点无聊,所以我写了一个小工具来让它更简单.也许它对你有用:https://github.com/hugollm/foster

The proccess can be little boring, so I wrote a little tool to make it simpler. Maybe it's of some use to you: https://github.com/hugollm/foster

这篇关于如何/在哪里发布 Python 包的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)