如何使用 twine 将新版本的项目上传到 PyPI?

How to upload new versions of project to PyPI with twine?(如何使用 twine 将新版本的项目上传到 PyPI?)
本文介绍了如何使用 twine 将新版本的项目上传到 PyPI?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我已将我的 Python 包上传到 PyPI.但现在我制作了我的包的新版本,需要上传它.我试图取得与第一次上传包时相同的进展.但是给我这个错误:

I've uploaded my Python package to PyPI. But now I made new version of my package and need to upload it. I tried to make same progress which I did when upload the package first time. but give me this error:

HTTPError: 400 Client Error: File already exists. See https://pypi.org/help/#file-name-reuse for url: https://upload.pypi.org/legacy

现在,如何上传新版本没有任何错误?!

Now, how to upload new version without any error?!

推荐答案

PyPI 不允许重复使用分发文件名(项目名称+版本号+分发类型).

PyPI does not allow for the reuse of distribution filenames (project name + version number + distribution type).

这可确保给定项目的给定版本的给定发行版将始终解析为相同的文件,并且不会在某一天被项目维护者或恶意方偷偷更改(只能将其删除).

This ensures that a given distribution for a given release for a given project will always resolve to the same file, and cannot be surreptitiously changed one day by the projects maintainer or a malicious party (it can only be removed).

您需要将版本号更改为您之前未上传到 PyPI 的版本号.

You will need to change the version number to one that you haven't previously uploaded to PyPI.

您没有提及您是如何上传分发的,但如果您使用的是 twine,那么您也有可能尝试重新上传之前上传的分发.要解决此问题,您可以这样做:

You didn't mention how you're uploading the distribution, but if you're using twine, it's also possible you're attempting to re-upload a previously uploaded distribution. To resolve this, you can do:

$ twine upload --skip-existing dist/*

这篇关于如何使用 twine 将新版本的项目上传到 PyPI?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)