根据 UTC 时间制作 discord.py(重写版本)计时器

Making a discord.py (rewrite version) timer based off of UTC time(根据 UTC 时间制作 discord.py(重写版本)计时器)
本文介绍了根据 UTC 时间制作 discord.py(重写版本)计时器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

限时送ChatGPT账号..

我想添加一个基于 UTC 时间的计时器来刷新我每天下载的 API 文件.我正在使用 Discord.py 的重写版本.这就是我在下面制作的方式:

I want to add a timer based off of UTC time to refresh my API files that I download daily. I am using the rewrite version of Discord.py. This is how I made it below:

@client.event
# Updates API files daily
async def clock_timer():
    from datetime import datetime
    import pytz

    datetime_utc = datetime.now(pytz.utc)

    await datetime_utc.strftime("%H:%M:%S") == "03:00:00"
    if datetime_utc.strftime("%H:%M:%S") == "03:00:00":
        processes.api_grabber()

我这样做对吗?

推荐答案

await datetime_utc.strftime("%H:%M:%S") == "03:00:00" 不是一个有效的语句,你需要做的是获取 time_delta 并一直休眠.

await datetime_utc.strftime("%H:%M:%S") == "03:00:00" is not a valid statement, what you need to do is get the time_delta and sleep till that.

datetime_utc = datetime.now(pytz.utc)
three_am_tmr = datetime_utc.replace(hour=3, minute=0, second=0) + timedelta(days=1)
delta = (three_am_tmr - datetime_utc).total_seconds()
await asyncio.sleep(delta)
#process api here

但是,如果您希望计时器每天执行,您必须使用 discord.py 任务或类似 APS

However if you want the timer to execute daily, you have to use a discord.py task or something like APS

from discord.ext import tasks

@tasks.loop(days=1)
async def grab(something):
     #proccess api here


@grab.before_loop()
async def waiter():
   datetime_utc = datetime.now(pytz.utc)
   three_am_tmr = datetime_utc.replace(hour=3, minute=0, second=0) + 
   timedelta(days=1)
   delta = (three_am_tmr - datetime_utc).total_seconds()
   await asyncio.sleep(delta)

#start task in a command

参考资料:

  • 日期时间
  • 任务
  • 这篇关于根据 UTC 时间制作 discord.py(重写版本)计时器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

    本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)