Python - DM 一个用户 Discord 机器人

Python - DM a User Discord Bot(Python - DM 一个用户 Discord 机器人)
本文介绍了Python - DM 一个用户 Discord 机器人的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

限时送ChatGPT账号..

我正在使用 Python 开发 User Discord Bot.如果 bot 所有者键入 !DM @user,那么 bot 将 DM 所有者提到的用户.

I'm working on a User Discord Bot in Python .If the bot owner types !DM @user then the bot will DM the user that was mentioned by the owner.

@client.event
async def on_message(message):
    if message.content.startswith('!DM'):
        msg = 'This Message is send in DM'
        await client.send_message(message.author, msg)

推荐答案

最简单的方法是使用 discord.ext.commands 扩展.这里我们使用 converter 来获取目标用户,和一个 keyword-only 参数发送给他们的可选消息:

The easiest way to do this is with the discord.ext.commands extension. Here we use a converter to get the target user, and a keyword-only argument as an optional message to send them:

from discord.ext import commands
import discord

bot = commands.Bot(command_prefix='!')

@bot.command(pass_context=True)
async def DM(ctx, user: discord.User, *, message=None):
    message = message or "This Message is sent via DM"
    await bot.send_message(user, message)

bot.run("TOKEN")


对于较新的 1.0+ 版本的 discord.py,您应该使用 send 而不是 send_message

from discord.ext import commands
import discord

bot = commands.Bot(command_prefix='!')

@bot.command()
async def DM(ctx, user: discord.User, *, message=None):
    message = message or "This Message is sent via DM"
    await user.send(message)

bot.run("TOKEN")

这篇关于Python - DM 一个用户 Discord 机器人的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)