如何从 Python 3.5 降级到 Python 3.4

2023-06-08Python开发问题
13

本文介绍了如何从 Python 3.5 降级到 Python 3.4的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想安装 kivy(链接在这里) 用于项目,但是,当尝试使用 pip 安装它所依赖的包时,我收到以下错误:

I want to install kivy (link here) to use for a project, however, when trying to use pip to install the packages it is dependent upon, I get the following error:

Could not find a version that satisfies the requirement kivy.deps.sdl2 (from versions: )
No matching distribution found for kivy.deps.sdl2

在 kivy 网站上的进一步阅读显示,由于某种图形错误,这些库不支持 Windows 10 上的 Python 3.5.该网站说您需要 python 3.4 才能安装它.

Further reading on kivy's website revealed that these libraries do not support Python 3.5 on windows 10 because of some kind of graphical bug. The website says you need python 3.4 in order to be able to install it.

这就带来了一个问题:我已经有了python 3.5,如何安装python 3.4?

Which brings the question: How do I install python 3.4 when I already have python 3.5?

推荐答案

到控制面板卸载Python 3.5,卸载一个程序,然后寻找Python 3.5,点击它并按下卸载.之后下载 Python 3.4.我不知道任何其他方法,但我认为这应该有效.

Uninstall Python 3.5 by going to control panel, uninstall a program, and then look for Python 3.5, click on it and press uninstall. After that download Python 3.4. I don't know any other ways but I think that should work.

这篇关于如何从 Python 3.5 降级到 Python 3.4的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11