Python设置1和True的interpetation

2023-07-03Python开发问题
2

本文介绍了Python设置1和True的interpetation的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

在 IPython 3 交互式外壳中:

In IPython 3 interactive shell:

In [53]: set2 = {1, 2, True, "hello"}

In [54]: len(set2)
Out[54]: 3

In [55]: set2
Out[55]: {'hello', True, 2}

这是因为 1 和 True 得到相同的交互作用,所以假设 set 消除了重复项,那么只有其中一个 (True) 可以保留?我们如何才能两者兼得?

Is that because 1 and True get the same interpetation so given that set eliminates duplicates, only one of them (True) gets to stay? How can we keep both?

推荐答案

集合是 hashables.即使语句 1 is True 是 False,语句 1 == True 也是 True.因此,它们具有相同的哈希值,不能单独存在于一个集合中,并且你不能将它们都放在一个集合中

A set is a collection of hashables. Even though the statement 1 is True is False, the statement 1 == True is True. Because of that, they have the same hash value and cannot exist separately in a set, and you cannot keep them both in a set

EDIT 明确地说,正如 jme 指出的那样,这是因为两件事都是真实的——它们是相等的(每个 __eq__)并且它们具有相同的 哈希值(每个 __hash__).

EDIT To make it explicit, as jme pointed out, it is because BOTH things are true - they are equal (per __eq__) AND they have the same hash value (per __hash__).

在一个完美的世界中,相等的对象也将具有相同的哈希值,幸好这对于内置类型是正确的.

In a perfect world, equal objects would also have the same hash value, and thankfully this is true for built-in types.

这篇关于Python设置1和True的interpetation的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10