为什么python在解释之前将源代码编译为字节码?

2023-07-04Python开发问题
4

本文介绍了为什么python在解释之前将源代码编译为字节码?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

为什么python在解释之前要把源码编译成字节码?

Why python compile the source to bytecode before interpreting?

为什么不直接从源头解释?

Why not interpret from the source directly?

推荐答案

几乎没有解释器真正直接逐行解释代码——这实在是太低效了.几乎所有解释器都使用一些可以轻松执行的中间表示.此外,还可以对此中间代码进行小幅优化.

Nearly no interpreter really interprets code directly, line by line – it's simply too inefficient. Almost all interpreters use some intermediate representation which can be executed easily. Also, small optimizations can be performed on this intermediate code.

Python 还存储了这段代码,这对下次执行这段代码有很大的好处:Python 不再需要解析代码;解析是编译过程中最慢的部分.因此,字节码表示可以大大减少执行开销.

Python furthermore stores this code which has a huge advantage for the next time this code gets executed: Python doesn't have to parse the code anymore; parsing is the slowest part in the compile process. Thus, a bytecode representation reduces execution overhead quite substantially.

这篇关于为什么python在解释之前将源代码编译为字节码?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10