Python Lambda 函数解析 DynamoDB 的 JSON 格式

2023-07-05Python开发问题
9

本文介绍了Python Lambda 函数解析 DynamoDB 的 JSON 格式的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

为 dynamodb 流调用的 Python Lambda 函数具有 DynamoDB 格式的 JSON(包含 JSON 中的数据类型).我想将 DynamoDB JSON 转换为标准 JSON.PHP 和 nodejs 有 Marshaler 可以做到这一点.如果 Python 有类似或其他选项,请告诉我.

Python Lambda function that gets invoked for a dynamodb stream has JSON that has DynamoDB format (contains the data types in JSON). I would like to covert DynamoDB JSON to standard JSON. PHP and nodejs have Marshaler that can do this. Please let me know if there are similar or other options for Python.

DynamoDB_format = `{"feas":
    {"M": {
        "fea": {
            "L": [
                {
                    "M": {
                        "pre": {
                            "N": "1"
                        },
                        "Li": {
                            "N": "1"
                        },
                        "Fa": {
                            "N": "0"
                        },
                        "Mo": {
                            "N": "1"
                        },
                        "Ti": {
                            "S": "20160618184156529"
                        },
                        "Fr": {
                            "N": "4088682"
                        }
                    }
                }
                ]
            }   
        }
    }
}`

推荐答案

更新:现在有一个库:https://pypi.org/project/dynamodb-json/

这是 indiangolfer 的回答的改进版本.虽然 @indiangolfer 的解决方案适用于该问题,但此改进版本可能对偶然发现此线程的其他人更有用.

Here is an improved version of indiangolfer's answer. While @indiangolfer's solution works for the question, this improved version might be more useful for others who stumble upon this thread.

def unmarshal_dynamodb_json(node):
    data = dict({})
    data['M'] = node
    return _unmarshal_value(data)


def _unmarshal_value(node):
    if type(node) is not dict:
        return node

    for key, value in node.items():
        # S – String - return string
        # N – Number - return int or float (if includes '.')
        # B – Binary - not handled
        # BOOL – Boolean - return Bool
        # NULL – Null - return None
        # M – Map - return a dict
        # L – List - return a list
        # SS – String Set - not handled
        # NN – Number Set - not handled
        # BB – Binary Set - not handled
        key = key.lower()
        if key == 'bool':
            return value
        if key == 'null':
            return None
        if key == 's':
            return value
        if key == 'n':
            if '.' in str(value):
                return float(value)
            return int(value)
        if key in ['m', 'l']:
            if key == 'm':
                data = {}
                for key1, value1 in value.items():
                    if key1.lower() == 'l':
                        data = [_unmarshal_value(n) for n in value1]
                    else:
                        if type(value1) is not dict:
                            return _unmarshal_value(value)
                        data[key1] = _unmarshal_value(value1)
                return data
            data = []
            for item in value:
                data.append(_unmarshal_value(item))
            return data

从以下几个方面进行改进:

It is improved in the following ways:

  • 处理更多数据类型,包括以前未正确处理的列表

  • handles more data types, including lists, which were not handled correctly previously

处理小写和大写键

修复递归对象错误

这篇关于Python Lambda 函数解析 DynamoDB 的 JSON 格式的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11