<small id='sJc6m'></small><noframes id='sJc6m'>

  • <tfoot id='sJc6m'></tfoot>

      <bdo id='sJc6m'></bdo><ul id='sJc6m'></ul>

    1. <legend id='sJc6m'><style id='sJc6m'><dir id='sJc6m'><q id='sJc6m'></q></dir></style></legend>
    2. <i id='sJc6m'><tr id='sJc6m'><dt id='sJc6m'><q id='sJc6m'><span id='sJc6m'><b id='sJc6m'><form id='sJc6m'><ins id='sJc6m'></ins><ul id='sJc6m'></ul><sub id='sJc6m'></sub></form><legend id='sJc6m'></legend><bdo id='sJc6m'><pre id='sJc6m'><center id='sJc6m'></center></pre></bdo></b><th id='sJc6m'></th></span></q></dt></tr></i><div id='sJc6m'><tfoot id='sJc6m'></tfoot><dl id='sJc6m'><fieldset id='sJc6m'></fieldset></dl></div>
      1. Python子进程调用挂起

        Python subprocess call hangs(Python子进程调用挂起)
              <tbody id='H8o9E'></tbody>

            <tfoot id='H8o9E'></tfoot>
              <legend id='H8o9E'><style id='H8o9E'><dir id='H8o9E'><q id='H8o9E'></q></dir></style></legend>

              <small id='H8o9E'></small><noframes id='H8o9E'>

              <i id='H8o9E'><tr id='H8o9E'><dt id='H8o9E'><q id='H8o9E'><span id='H8o9E'><b id='H8o9E'><form id='H8o9E'><ins id='H8o9E'></ins><ul id='H8o9E'></ul><sub id='H8o9E'></sub></form><legend id='H8o9E'></legend><bdo id='H8o9E'><pre id='H8o9E'><center id='H8o9E'></center></pre></bdo></b><th id='H8o9E'></th></span></q></dt></tr></i><div id='H8o9E'><tfoot id='H8o9E'></tfoot><dl id='H8o9E'><fieldset id='H8o9E'></fieldset></dl></div>

                  <bdo id='H8o9E'></bdo><ul id='H8o9E'></ul>
                • 本文介绍了Python子进程调用挂起的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  Python 版本:2.6.7我在执行 18 次的 for 循环中有以下 subprocess.call,但是,该进程在第 19 次循环中不断挂起:

                  Python version: 2.6.7 I have the following subprocess.call within a for loop which is exectuted 18 times, however, the process constantly hangs on the 19th loop:

                  if config.get_bool_option(NAME, 'exclude_generated_code', True):
                              for conf in desc.iter_configs():
                                  for gen in desc.iter_generators(conf):
                                      generator.initialize_generated_path(gen, desc)
                                      for genpath in gen.generated_path:
                                          os.rename(cov_file, cov_file+'.temp')
                                          exclude = ['lcov']
                                          exclude += ['-r', cov_file+'.temp', '"'+genpath+'/*"']
                                          exclude += ['-o', cov_file]
                                          if verbose: Tracer.log.info("Running "+ ' '.join(exclude))
                                          try:
                                              subprocess.call(' '.join(exclude), stdout=out, stderr=out, shell=True)
                                          except subprocess.CalledProcessError, e:
                                          if verbose: Tracer.log.info("TESTING: Got Exception 
                  ") 
                  

                  控制台输出如下:

                  Running lcov -r /remote/XXXXXX/coverage.19.temp "/remote/XXXXXX/xml/2009a/generated/*" -o /remote/XXXXX/gcov/coverage.19
                  

                  由于我对python脚本不是很熟悉,所以我只是在这里徘徊是否我做错了什么......我怀疑某个地方出现了死锁......

                  Since I am not very familiar with python scripts, I just wandered whether I am doing something wrong here...I suspect a deadlock somewhere..

                  stdout,stderr = process.communicate()会处理这些问题吗?

                  请专家解答 subprocess.call 在哪些情况下会挂起?非常感谢

                  Any expert answer on in which cases would the subprocess.call hang please? Thanks very much

                  推荐答案

                  在使用子进程时,我倾向于这样做:

                  When using subprocess, I tend to do something like this:

                  is_running = lambda: my_process.poll() is None
                  
                  my_process = subprocess.Popen(' '.join(exclude), 
                                                stdout=subprocess.PIPE, 
                                                stderr=subprocess.PIPE,
                                                shell=True)
                  
                  # Grab all the output from stdout and stderr and log it
                  while is_running():
                      rlist, wlist, xlist = select.select([my_process.stdout, my_process.stderr], [], [], 1)
                  
                  # Log stdout, but don't spam the log
                  if my_process.stdout in rlist and verbose:
                      # Adjust the number of bytes read however you like, 1024 seems to work 
                      # pretty well for me. 
                      Tracer.log.debug(my_process.stdout.read(1024))
                  
                  # Log stderr, always
                  if my_process.stderr in rlist:
                      # Same as with stdout, adjust the bytes read as needed.
                      Tracer.log.error(my_process.stderr.read(1024))
                  

                  过去,我看到标准输出的东西只是在我的日志中转储了一堆空行,这就是我在调试级别记录的原因.这会在开发过程中打印到我的日志中,但从未在生产中写入,因此我可以安全地将其留在代码中进行调试,而不会将垃圾放入日志中.

                  I've seen the stdout stuff just dump a bunch of empty lines in my logs in the past, which is why I log that at the debug level. That prints to my logs during the development, but never gets written in production, so I can safely leave it in the code for debugging without putting garbage in their logs.

                  希望这有助于揭示您的程序挂起的位置以及导致挂起的原因.

                  Hopefully, this can help expose just where your program is hanging and what's causing it.

                  这篇关于Python子进程调用挂起的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                  Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)
                    <tbody id='fXJtM'></tbody>

                    • <bdo id='fXJtM'></bdo><ul id='fXJtM'></ul>
                      • <legend id='fXJtM'><style id='fXJtM'><dir id='fXJtM'><q id='fXJtM'></q></dir></style></legend>

                          <tfoot id='fXJtM'></tfoot>
                            <i id='fXJtM'><tr id='fXJtM'><dt id='fXJtM'><q id='fXJtM'><span id='fXJtM'><b id='fXJtM'><form id='fXJtM'><ins id='fXJtM'></ins><ul id='fXJtM'></ul><sub id='fXJtM'></sub></form><legend id='fXJtM'></legend><bdo id='fXJtM'><pre id='fXJtM'><center id='fXJtM'></center></pre></bdo></b><th id='fXJtM'></th></span></q></dt></tr></i><div id='fXJtM'><tfoot id='fXJtM'></tfoot><dl id='fXJtM'><fieldset id='fXJtM'></fieldset></dl></div>

                            <small id='fXJtM'></small><noframes id='fXJtM'>