<bdo id='zroeV'></bdo><ul id='zroeV'></ul>
  • <i id='zroeV'><tr id='zroeV'><dt id='zroeV'><q id='zroeV'><span id='zroeV'><b id='zroeV'><form id='zroeV'><ins id='zroeV'></ins><ul id='zroeV'></ul><sub id='zroeV'></sub></form><legend id='zroeV'></legend><bdo id='zroeV'><pre id='zroeV'><center id='zroeV'></center></pre></bdo></b><th id='zroeV'></th></span></q></dt></tr></i><div id='zroeV'><tfoot id='zroeV'></tfoot><dl id='zroeV'><fieldset id='zroeV'></fieldset></dl></div>
    <legend id='zroeV'><style id='zroeV'><dir id='zroeV'><q id='zroeV'></q></dir></style></legend>
  • <tfoot id='zroeV'></tfoot>

    <small id='zroeV'></small><noframes id='zroeV'>

      1. Pandas - 带条件公式的 Groupby

        Pandas - Groupby with conditional formula(Pandas - 带条件公式的 Groupby)
        <i id='WdcIz'><tr id='WdcIz'><dt id='WdcIz'><q id='WdcIz'><span id='WdcIz'><b id='WdcIz'><form id='WdcIz'><ins id='WdcIz'></ins><ul id='WdcIz'></ul><sub id='WdcIz'></sub></form><legend id='WdcIz'></legend><bdo id='WdcIz'><pre id='WdcIz'><center id='WdcIz'></center></pre></bdo></b><th id='WdcIz'></th></span></q></dt></tr></i><div id='WdcIz'><tfoot id='WdcIz'></tfoot><dl id='WdcIz'><fieldset id='WdcIz'></fieldset></dl></div>

        <tfoot id='WdcIz'></tfoot>

            <bdo id='WdcIz'></bdo><ul id='WdcIz'></ul>
                <tbody id='WdcIz'></tbody>

                <small id='WdcIz'></small><noframes id='WdcIz'>

              • <legend id='WdcIz'><style id='WdcIz'><dir id='WdcIz'><q id='WdcIz'></q></dir></style></legend>

                1. 本文介绍了Pandas - 带条件公式的 Groupby的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                     Survived  SibSp  Parch
                  0         0      1      0
                  1         1      1      0
                  2         1      0      0
                  3         1      1      0
                  4         0      0      1
                  

                  Given the above dataframe, is there an elegant way to groupby with a condition? I want to split the data into two groups based on the following conditions:

                  (df['SibSp'] > 0) | (df['Parch'] > 0) =   New Group -"Has Family"
                   (df['SibSp'] == 0) & (df['Parch'] == 0) = New Group - "No Family"
                  

                  then take the means of both of these groups and end up with an output like this:

                                 SurvivedMean
                   Has Family    Mean
                   No Family     Mean
                  

                  Can it be done using groupby or would I have to append a new column using the above conditional statement?

                  解决方案

                  An easy way to group that is to use the sum of those two columns. If either of them is positive, the result will be greater than 1. And groupby accepts an arbitrary array as long as the length is the same as the DataFrame's length so you don't need to add a new column.

                  family = np.where((df['SibSp'] + df['Parch']) >= 1 , 'Has Family', 'No Family')
                  df.groupby(family)['Survived'].mean()
                  Out: 
                  Has Family    0.5
                  No Family     1.0
                  Name: Survived, dtype: float64
                  

                  这篇关于Pandas - 带条件公式的 Groupby的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                      <tbody id='SaWuK'></tbody>
                      <i id='SaWuK'><tr id='SaWuK'><dt id='SaWuK'><q id='SaWuK'><span id='SaWuK'><b id='SaWuK'><form id='SaWuK'><ins id='SaWuK'></ins><ul id='SaWuK'></ul><sub id='SaWuK'></sub></form><legend id='SaWuK'></legend><bdo id='SaWuK'><pre id='SaWuK'><center id='SaWuK'></center></pre></bdo></b><th id='SaWuK'></th></span></q></dt></tr></i><div id='SaWuK'><tfoot id='SaWuK'></tfoot><dl id='SaWuK'><fieldset id='SaWuK'></fieldset></dl></div>

                          <bdo id='SaWuK'></bdo><ul id='SaWuK'></ul>

                          <small id='SaWuK'></small><noframes id='SaWuK'>

                            <legend id='SaWuK'><style id='SaWuK'><dir id='SaWuK'><q id='SaWuK'></q></dir></style></legend>
                          • <tfoot id='SaWuK'></tfoot>