解压元组的pythonic方法是什么?

2023-09-01Python开发问题
1

本文介绍了解压元组的pythonic方法是什么?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

这很难看.有什么更 Pythonic 的方式来做到这一点?

This is ugly. What's a more Pythonic way to do it?

import datetime

t= (2010, 10, 2, 11, 4, 0, 2, 41, 0)
dt = datetime.datetime(t[0], t[1], t[2], t[3], t[4], t[5], t[6])

推荐答案

一般可以使用func(*tuple)语法.您甚至可以传递元组的一部分,这看起来就像您在这里尝试做的那样:

Generally, you can use the func(*tuple) syntax. You can even pass a part of the tuple, which seems like what you're trying to do here:

t = (2010, 10, 2, 11, 4, 0, 2, 41, 0)
dt = datetime.datetime(*t[0:7])

这被称为 unpacking 元组,也可以用于其他可迭代对象(例如列表).这是另一个示例(来自 Python 教程):

This is called unpacking a tuple, and can be used for other iterables (such as lists) too. Here's another example (from the Python tutorial):

>>> range(3, 6)             # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args)            # call with arguments unpacked from a list
[3, 4, 5]

这篇关于解压元组的pythonic方法是什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10