如何测量 Python 请求 POST 请求的服务器响应时间

2023-09-02Python开发问题
16

本文介绍了如何测量 Python 请求 POST 请求的服务器响应时间的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我像这样创建 requests POST 请求,我在其中指定超时阈值:

I create requests POST-requests like this, where I specify timeout threshold:

response = requests.post(url, data=post_fields, timeout=timeout)

但是,为了确定一个好的"阈值,我想提前对服务器响应时间进行基准测试.

However, to determine a "good" threshold value, I would like to benchmark the server response time in advance.

如何计算服务器的最小和最大响应时间?

How do I compute the minimum and maximum response times for the server?

推荐答案

requests.post()(和requests.get() etc.) 有一个名为 elapsed 的属性,它提供发送 Request 和收到 Response 之间的时间差.要以秒为单位获取增量,请使用 total_seconds() 方法:

The Response object returned by requests.post() (and requests.get() etc.) has a property called elapsed, which provides the time delta between the Request was sent and the Response was received. To get the delta in seconds, use the total_seconds() method:

response = requests.post(url, data=post_fields, timeout=timeout)
print(response.elapsed.total_seconds())

注意 requests.post() 是一个同步操作,这意味着它阻塞直到收到 Response.

Note that requests.post() is a synchronous operation, which means that it blocks until the Response is received.

这篇关于如何测量 Python 请求 POST 请求的服务器响应时间的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11