Pandas to bipartite graph( pandas 到二部图)
本文介绍了 pandas 到二部图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我已经在我的图中添加了节点,但我似乎不明白如何向它添加边。这些边对应于我的轴心标签中的任何值1。该表的格式如下:
movie_id 1 2 3 4 5 ... 500
user_id ...
501 1.0 0.0 1.0 0.0 0.0 ... 0.0
502 1.0 0.0 0.0 0.0 0.0 ... 0.0
503 0.0 0.0 0.0 0.0 0.0 ... 1.0
504 0.0 0.0 0.0 1.0 0.0 ... 0.0
. ...
.
1200
这是我用于节点的代码:
B = nx.Graph()
B.add_nodes_from(user_rating_pivoted.index, bipartite=0)
B.add_nodes_from(user_rating_pivoted.columns, bipartite=1)
我想边缘应该以类似的方式形成:
add_edges_from(...) for idx, row in user_rating_pivoted.iterrows())
推荐答案
让我们向这些索引和列添加前缀,并将它们用作节点,以便更轻松地关联连接:
print(df)
movie_1 movie_2 movie_3 movie_4 movie_5 movie_6
user_1 1.0 1.0 1.0 1.0 0.0 0.0
user_2 1.0 0.0 0.0 0.0 0.0 0.0
user_3 0.0 1.0 0.0 0.0 0.0 1.0
user_4 1.0 0.0 1.0 0.0 1.0 0.0
为了得到边(并保留节点名称),我们可以使用 pandas 对数据帧进行一些变换。我们可以使用stack
得到一个MultiIndex
,然后对1
的值进行索引。然后我们可以使用add_edges_from
将所有edge
数据相加:
B = nx.Graph()
B.add_nodes_from(df.index, bipartite=0)
B.add_nodes_from(df.columns, bipartite=1)
s = df.stack()
B.add_edges_from(s[s==1].index)
我们可以使用bipartite_layout
来很好地布局二部图:
top = nx.bipartite.sets(B)[0]
pos = nx.bipartite_layout(B, top)
nx.draw(B, pos=pos,
node_color='lightgreen',
node_size=2500,
with_labels=True)
请注意,这些高度稀疏的矩阵很可能会导致不连通的图,即并非所有节点都连接到其他某个节点的图,尝试同时获取这两个集合将引发指定的错误here。
AmbiguousSolution-如果输入二部图断开连接且未提供包含一个二部集中所有节点的容器,则引发。在确定每个二部集合中的节点时,如果输入图断开连接,则可能有多个有效解。
在这种情况下,您只需使用:
绘制常规图形即可rcParams['figure.figsize'] = 10 ,8
nx.draw(B,
node_color='lightgreen',
node_size=2000,
with_labels=True)
这篇关于 pandas 到二部图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:pandas 到二部图


基础教程推荐
猜你喜欢
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 求两个直方图的卷积 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 包装空间模型 2022-01-01