如何在 numpy 中创建一个“接受"附加的空列表网格?

2023-09-27Python开发问题
1

本文介绍了如何在 numpy 中创建一个“接受"附加的空列表网格?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

I am trying to use numpy.append but something goes wrong and it just doesn't make sence to me anymore. Can someone explain why I am getting an error?

>>> np.array([[], [], []]).shape
(3, 0)

>>> a=[[], [], []]
>>> a[1].append(3)
>>> a
[[], [3], []]

>>> b=np.array(a)
>>> b[0].append(3)
array([[3], [3], []], dtype=object)

This is all logical to me, yet when I try the following it stops working.

>>> c=np.array((3,0),dtype=object)
>>> c[0].append(3)
AttributeError: 'int' object has no attribute 'append'

????
>>> np.empty((3,1))[0].append(3)
AttributeError: 'numpy.ndarray' object has no attribute 'append'

>>> np.empty((3,0))[1].append(3)
AttributeError: 'numpy.ndarray' object has no attribute 'append'

>>>np.empty((6,1),dtype=object)[0].append(3)
AttributeError: 'numpy.ndarray' object has no attribute 'append'

Solved: How to create a numpy array of lists?

解决方案

Don't just look at the shape; check the dtype, and if object, the nature of the elements

In [282]: np.array([[], [], []])
Out[282]: array([], shape=(3, 0), dtype=float64)

A 2d array of floats. np.array tries to make a multidimensional array of numbers; it's only when it can't do that it makes an object array.

In [283]: b=np.array([[],[3],[]])
In [284]: b
Out[284]: array([[], [3], []], dtype=object)

Here the 3 sublists have different size, so it can't make a 2d array; the result is an object array, where the objects are lists, and have the append method.

In [286]: c=np.array((3,0), object)
In [287]: c
Out[287]: array([3, 0], dtype=object)

This is a (2,) object array; the 2 elements are numbers. Numbers don't have an append method.

In [288]: np.empty((3,1))
Out[288]: 
array([[ 0.],
       [ 0.],
       [ 0.]])

A (3,1) array of floats. No append method for numbers or arrays.

In [289]: np.empty((3,0))
Out[289]: array([], shape=(3, 0), dtype=float64)

Another 2d array of floats

In [290]: np.empty((6,1),object)
Out[290]: 
array([[None],
       [None],
       [None],
       [None],
       [None],
       [None]], dtype=object)

2d array of dtype object. In this case they are initialized to None. Again no append method.

More on making an array of lists

dimensions of array of arrays in numpy

and

How to keep numpy from broadcasting when creating an object array of different shaped arrays


In [305]: d=np.empty((3,),object)
In [306]: d
Out[306]: array([None, None, None], dtype=object)
In [307]: d.fill([])
In [308]: d
Out[308]: array([[], [], []], dtype=object)   # array of lists
In [309]: d[0].append([1,2,3])
In [310]: d
Out[310]: array([[[1, 2, 3]], [[1, 2, 3]], [[1, 2, 3]]], dtype=object)

But oops - those lists are all the same object (pointer) :( I have to put a different list in each element. Now I can append to them individually.

In [311]: d[...]=[[],[1,2,3],[2]]
In [312]: d
Out[312]: array([[], [1, 2, 3], [2]], dtype=object)
In [313]: d[0].append([2,3])
In [314]: d
Out[314]: array([[[2, 3]], [1, 2, 3], [2]], dtype=object)

I think you have to bite the bullet and use a list to initialize an object array of lists. There isn't a short cut:

In [319]: d=np.empty((3,),object)
In [320]: d[...]=[[] for _ in range(3)]
In [321]: d
Out[321]: array([[], [], []], dtype=object)
In [323]: d
Out[323]: array([[], [3], []], dtype=object)

这篇关于如何在 numpy 中创建一个“接受"附加的空列表网格?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11