根据日期将数据框拆分为两个

2023-09-29Python开发问题
3

本文介绍了根据日期将数据框拆分为两个的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有这样的 1000 行数据集

I have dataset with 1000 rows like this

 Date,      Cost,         Quantity(in ton),    Source,          Unloading Station
    01/10/2015, 7,            5.416,               XYZ,           ABC

我想根据日期拆分数据.例如截至日期 20.12.2016 是训练数据,之后是测试数据.

i want to split the data on the base of date. For e.g. till date 20.12.2016 is a training data and after that it is test data.

我应该如何拆分?有可能吗?

How should i split? Is it possible?

推荐答案

您可以通过将列转换为 pandas to_datetime 类型并将其设置为索引来轻松地做到这一点.

You can easily do that by converting your column to pandas to_datetime type and set it as index.

import pandas as pd
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index(df['Date'])
df = df.sort_index()

一旦你有了这种格式的数据,你可以简单地使用日期作为索引来创建分区,如下所示:

Once you have your data in this format, you can simply use date as index for creating partition as follows:

# create train test partition
train = df['2015-01-10':'2016-12-20']
test  = df['2016-12-21':]
print('Train Dataset:',train.shape)
print('Test Dataset:',test.shape)

这篇关于根据日期将数据框拆分为两个的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10