本文介绍了如何在 matplotlib 中制作两个滑块的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
I would like to make two sliders in matplotlib to manually change N and P values in my predator-prey model:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def lotka(x,t,params):
N, P = x
alpha, beta, gamma, delta = params
derivs = [alpha*N - beta*N*P, gamma*N*P - delta*P]
return derivs
N=2
P=1
alpha=3
beta=0.5
gamma=0.4
delta=3
params = [alpha, beta, gamma, delta]
x0=[N,P]
maxt = 20
tstep = 0.01
t=np.arange(0,maxt,tstep)
equation=odeint(lotka, x0, t, args=(params,))
plt.plot(t,equation)
plt.xlabel("Time")
plt.ylabel("Population size")
plt.legend(["Prey", "Predator"], loc="upper right")
plt.title('Prey & Predator Static Model')
plt.grid(color="b", alpha=0.5, linestyle="dashed", linewidth=0.5)
This is my code which produces a graph for fixed initial values of N and P. However, I'd like to change them to see how the plot changes. And for this, I'd like to use sliders like: http://matplotlib.org/users/screenshots.html#slider-demo but I do not know how to add this into my code...
Could anyone please give me any direction? Many thanks!! xx
解决方案
From the example, hope the comments help you understand what's what:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
from scipy.integrate import odeint
# Function to draw
def lotka(x, t, params):
N, P = x
alpha, beta, gamma, delta = params
derivs = [alpha*N - beta*N*P, gamma*N*P - delta*P]
return derivs
# Parameters
Nmin = 1
Nmax = 100
Pmin = 1
Pmax = 100
N0 = 2
P0 = 1
alpha = 3
beta = 0.5
gamma = 0.4
delta = 3
params = [alpha, beta, gamma, delta]
x0=[N0,P0]
maxt = 20
tstep = 0.01
# Initial function values
t = np.arange(0, maxt, tstep)
prey, predator = odeint(lotka, x0, t, args=(params,)).T
# odeint returne a shape (2000, 2) array, with the value for
# each population in [[n_preys, n_predators], ...]
# The .T at the end transponses the array, so now we get each population
# over time in each line of the resultint (2, 2000) array.
# Create a figure and an axis to plot in:
fig = plt.figure()
ax = fig.add_axes([0.10, 0.3, 0.8, 0.6])
prey_plot = ax.plot(t, prey, label="Prey")[0]
predator_plot = ax.plot(t, predator, label="Predator")[0]
ax.set_xlabel("Time")
ax.set_ylabel("Population size")
ax.legend(loc="upper right")
ax.set_title('Prey & Predator Static Model')
ax.grid(color="b", alpha=0.5, linestyle="dashed", linewidth=0.5)
ax.set_ylim([0, np.max([prey, predator])])
# create a space in the figure to place the two sliders:
axcolor = 'lightgoldenrodyellow'
axis_N = fig.add_axes([0.10, 0.1, 0.8, 0.03], facecolor=axcolor)
axis_P = fig.add_axes([0.10, 0.15, 0.8, 0.03], facecolor=axcolor)
# the first argument is the rectangle, with values in percentage of the figure
# size: [left, bottom, width, height]
# create each slider on its corresponding place:
slider_N = Slider(axis_N, 'N', Nmin, Nmax, valinit=N0)
slider_P = Slider(axis_P, 'P', Pmin, Pmax, valinit=P0)
def update(val):
# retrieve the values from the sliders
x = [slider_N.val, slider_P.val]
# recalculate the function values
prey, predator = odeint(lotka, x, t, args=(params,)).T
# update the value on the graph
prey_plot.set_ydata(prey)
predator_plot.set_ydata(predator)
# redraw the graph
fig.canvas.draw_idle()
ax.set_ylim([0, np.max([prey, predator])])
# set both sliders to call update when their value is changed:
slider_N.on_changed(update)
slider_P.on_changed(update)
# create the reset button axis (where its drawn)
resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
# and the button itself
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
slider_N.reset()
slider_P.reset()
button.on_clicked(reset)
Notice, however, you should have shown how you tried to adapt the example to what you had and how it was misbehaving.
Nevertheless, welcome to Stackoverflow.
这篇关于如何在 matplotlib 中制作两个滑块的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
The End


大气响应式网络建站服务公司织梦模板
高端大气html5设计公司网站源码
织梦dede网页模板下载素材销售下载站平台(带会员中心带筛选)
财税代理公司注册代理记账网站织梦模板(带手机端)
成人高考自考在职研究生教育机构网站源码(带手机端)
高端HTML5响应式企业集团通用类网站织梦模板(自适应手机端)