如何在 matplotlib 中制作两个滑块

2023-10-19Python开发问题
9

本文介绍了如何在 matplotlib 中制作两个滑块的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

I would like to make two sliders in matplotlib to manually change N and P values in my predator-prey model:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def lotka(x,t,params):
    N, P = x 
    alpha, beta, gamma, delta = params 
    derivs = [alpha*N - beta*N*P, gamma*N*P - delta*P] 
    return derivs

N=2
P=1
alpha=3
beta=0.5
gamma=0.4
delta=3

params = [alpha, beta, gamma, delta]
x0=[N,P]
maxt = 20
tstep = 0.01

t=np.arange(0,maxt,tstep)
equation=odeint(lotka, x0, t, args=(params,))

plt.plot(t,equation)
plt.xlabel("Time")
plt.ylabel("Population size")
plt.legend(["Prey", "Predator"], loc="upper right")

plt.title('Prey & Predator Static Model')
plt.grid(color="b", alpha=0.5, linestyle="dashed", linewidth=0.5)

This is my code which produces a graph for fixed initial values of N and P. However, I'd like to change them to see how the plot changes. And for this, I'd like to use sliders like: http://matplotlib.org/users/screenshots.html#slider-demo but I do not know how to add this into my code...

Could anyone please give me any direction? Many thanks!! xx

解决方案

From the example, hope the comments help you understand what's what:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
from scipy.integrate import odeint

# Function to draw
def lotka(x, t, params):
    N, P = x
    alpha, beta, gamma, delta = params 
    derivs = [alpha*N - beta*N*P, gamma*N*P - delta*P] 
    return derivs

# Parameters
Nmin = 1
Nmax = 100
Pmin = 1
Pmax = 100
N0 = 2
P0 = 1
alpha = 3
beta = 0.5
gamma = 0.4
delta = 3

params = [alpha, beta, gamma, delta]
x0=[N0,P0]
maxt = 20
tstep = 0.01

# Initial function values
t = np.arange(0, maxt, tstep)
prey, predator = odeint(lotka, x0, t, args=(params,)).T
# odeint returne a shape (2000, 2) array, with the value for
# each population in [[n_preys, n_predators], ...]
# The .T at the end transponses the array, so now we get each population
# over time in each line of the resultint (2, 2000) array.

# Create a figure and an axis to plot in:
fig = plt.figure()
ax = fig.add_axes([0.10, 0.3, 0.8, 0.6])
prey_plot = ax.plot(t, prey, label="Prey")[0]
predator_plot = ax.plot(t, predator, label="Predator")[0]

ax.set_xlabel("Time")
ax.set_ylabel("Population size")
ax.legend(loc="upper right")
ax.set_title('Prey & Predator Static Model')
ax.grid(color="b", alpha=0.5, linestyle="dashed", linewidth=0.5)
ax.set_ylim([0, np.max([prey, predator])])

# create a space in the figure to place the two sliders:
axcolor = 'lightgoldenrodyellow'
axis_N = fig.add_axes([0.10, 0.1, 0.8, 0.03], facecolor=axcolor)
axis_P = fig.add_axes([0.10, 0.15, 0.8, 0.03], facecolor=axcolor)
# the first argument is the rectangle, with values in percentage of the figure
# size: [left, bottom, width, height]

# create each slider on its corresponding place:
slider_N = Slider(axis_N, 'N', Nmin, Nmax, valinit=N0)
slider_P = Slider(axis_P, 'P', Pmin, Pmax, valinit=P0)

def update(val):
    # retrieve the values from the sliders
    x = [slider_N.val, slider_P.val]
    # recalculate the function values
    prey, predator = odeint(lotka, x, t, args=(params,)).T
    # update the value on the graph
    prey_plot.set_ydata(prey)
    predator_plot.set_ydata(predator)
    # redraw the graph
    fig.canvas.draw_idle()
    ax.set_ylim([0, np.max([prey, predator])])

# set both sliders to call update when their value is changed:
slider_N.on_changed(update)
slider_P.on_changed(update)

# create the reset button axis (where its drawn)
resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
# and the button itself
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')

def reset(event):
    slider_N.reset()
    slider_P.reset()

button.on_clicked(reset)

Notice, however, you should have shown how you tried to adapt the example to what you had and how it was misbehaving.

Nevertheless, welcome to Stackoverflow.

这篇关于如何在 matplotlib 中制作两个滑块的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11