为什么泡菜比 np.save 花费这么多时间?

2023-10-19Python开发问题
2

本文介绍了为什么泡菜比 np.save 花费这么多时间?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想保存 dict 或数组.

我尝试使用 np.savepickle 并发现前者总是花费更少的时间.

I try both with np.save and with pickle and see that the former always take much less time.

我的实际数据要大得多,但我只是在这里展示一小块用于演示目的:

My actual data is much bigger but I just present a small piece here for demonstration purposes:

import numpy as np
#import numpy.array as array
import time
import pickle

b = {0: [np.array([0, 0, 0, 0])], 1: [np.array([1, 0, 0, 0]), np.array([0, 1, 0, 0]), np.array([0, 0, 1, 0]), np.array([0, 0, 0, 1]), np.array([-1,  0,  0,  0]), np.array([ 0, -1,  0,  0]), np.array([ 0,  0, -1,  0]), np.array([ 0,  0,  0, -1])], 2: [np.array([2, 0, 0, 0]), np.array([1, 1, 0, 0]), np.array([1, 0, 1, 0]), np.array([1, 0, 0, 1]), np.array([ 1, -1,  0,  0]), np.array([ 1,  0, -1,  0]), np.array([ 1,  0,  0, -1])], 3: [np.array([1, 0, 0, 0]), np.array([0, 1, 0, 0]), np.array([0, 0, 1, 0]), np.array([0, 0, 0, 1]), np.array([-1,  0,  0,  0]), np.array([ 0, -1,  0,  0]), np.array([ 0,  0, -1,  0]), np.array([ 0,  0,  0, -1])], 4: [np.array([2, 0, 0, 0]), np.array([1, 1, 0, 0]), np.array([1, 0, 1, 0]), np.array([1, 0, 0, 1]), np.array([ 1, -1,  0,  0]), np.array([ 1,  0, -1,  0]), np.array([ 1,  0,  0, -1])], 5: [np.array([0, 0, 0, 0])], 6: [np.array([1, 0, 0, 0]), np.array([0, 1, 0, 0]), np.array([0, 0, 1, 0]), np.array([0, 0, 0, 1]), np.array([-1,  0,  0,  0]), np.array([ 0, -1,  0,  0]), np.array([ 0,  0, -1,  0]), np.array([ 0,  0,  0, -1])], 2: [np.array([2, 0, 0, 0]), np.array([1, 1, 0, 0]), np.array([1, 0, 1, 0]), np.array([1, 0, 0, 1]), np.array([ 1, -1,  0,  0]), np.array([ 1,  0, -1,  0]), np.array([ 1,  0,  0, -1])], 7: [np.array([1, 0, 0, 0]), np.array([0, 1, 0, 0]), np.array([0, 0, 1, 0]), np.array([0, 0, 0, 1]), np.array([-1,  0,  0,  0]), np.array([ 0, -1,  0,  0]), np.array([ 0,  0, -1,  0]), np.array([ 0,  0,  0, -1])], 8: [np.array([2, 0, 0, 0]), np.array([1, 1, 0, 0]), np.array([1, 0, 1, 0]), np.array([1, 0, 0, 1]), np.array([ 1, -1,  0,  0]), np.array([ 1,  0, -1,  0]), np.array([ 1,  0,  0, -1])]}


start_time = time.time()
with open('testpickle', 'wb') as myfile:
    pickle.dump(b, myfile)
print("--- Time to save with pickle: %s milliseconds ---" % (1000*time.time() - 1000*start_time))

start_time = time.time()
np.save('numpy', b)
print("--- Time to save with numpy: %s milliseconds ---" % (1000*time.time() - 1000*start_time))

start_time = time.time()
with open('testpickle', 'rb') as myfile:
    g1 = pickle.load(myfile)
print("--- Time to load with pickle: %s milliseconds ---" % (1000*time.time() - 1000*start_time))

start_time = time.time()
g2 = np.load('numpy.npy')
print("--- Time to load with numpy: %s milliseconds ---" % (1000*time.time() - 1000*start_time))

给出输出:

--- Time to save with pickle: 4.0 milliseconds ---
--- Time to save with numpy: 1.0 milliseconds ---
--- Time to load with pickle: 2.0 milliseconds ---
--- Time to load with numpy: 1.0 milliseconds ---

根据我的实际大小(字典中约 100,000 个键),时差更加明显.

The time difference is even more pronounced with my actual size (~100,000 keys in the dict).

为什么 pickle 的保存和加载时间都比 np.save 长?

Why does pickle take longer than np.save, both for saving and for loading?

我应该什么时候使用 pickle?

When should I use pickle?

推荐答案

因为只要写入的对象不包含Python数据,

Because as long as the written object contains no Python data,

  • numpy 对象在内存中的表示方式比 Python 对象简单得多
  • numpy.save 是用 C 编写的
  • numpy.save 以需要最少处理的超简单格式写入

同时

  • Python 对象有很多开销
  • pickle 是用 Python 编写的
  • pickle 将数据从内存中的底层表示转换为写入磁盘上的字节

请注意,如果一个 numpy 数组确实包含 Python 对象,那么 numpy 只会腌制该数组,所有的胜利都会消失.

Note that if a numpy array does contain Python objects, then numpy just pickles the array, and all the win goes out the window.

这篇关于为什么泡菜比 np.save 花费这么多时间?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10