<i id='qdNlY'><tr id='qdNlY'><dt id='qdNlY'><q id='qdNlY'><span id='qdNlY'><b id='qdNlY'><form id='qdNlY'><ins id='qdNlY'></ins><ul id='qdNlY'></ul><sub id='qdNlY'></sub></form><legend id='qdNlY'></legend><bdo id='qdNlY'><pre id='qdNlY'><center id='qdNlY'></center></pre></bdo></b><th id='qdNlY'></th></span></q></dt></tr></i><div id='qdNlY'><tfoot id='qdNlY'></tfoot><dl id='qdNlY'><fieldset id='qdNlY'></fieldset></dl></div>
    1. <small id='qdNlY'></small><noframes id='qdNlY'>

      <legend id='qdNlY'><style id='qdNlY'><dir id='qdNlY'><q id='qdNlY'></q></dir></style></legend>
      <tfoot id='qdNlY'></tfoot>
      • <bdo id='qdNlY'></bdo><ul id='qdNlY'></ul>

        将numpy数组逐行保存到txt文件

        Saving numpy array to txt file row wise(将numpy数组逐行保存到txt文件)

        <small id='PAXRs'></small><noframes id='PAXRs'>

        <legend id='PAXRs'><style id='PAXRs'><dir id='PAXRs'><q id='PAXRs'></q></dir></style></legend>
            <tbody id='PAXRs'></tbody>
        • <i id='PAXRs'><tr id='PAXRs'><dt id='PAXRs'><q id='PAXRs'><span id='PAXRs'><b id='PAXRs'><form id='PAXRs'><ins id='PAXRs'></ins><ul id='PAXRs'></ul><sub id='PAXRs'></sub></form><legend id='PAXRs'></legend><bdo id='PAXRs'><pre id='PAXRs'><center id='PAXRs'></center></pre></bdo></b><th id='PAXRs'></th></span></q></dt></tr></i><div id='PAXRs'><tfoot id='PAXRs'></tfoot><dl id='PAXRs'><fieldset id='PAXRs'></fieldset></dl></div>
          • <tfoot id='PAXRs'></tfoot>

                <bdo id='PAXRs'></bdo><ul id='PAXRs'></ul>
                  本文介绍了将numpy数组逐行保存到txt文件的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有一个 numpy 表单数组

                  I have an numpy array of form

                  a = [1,2,3]
                  

                  我想将其保存到 .txt 文件中,使文件看起来像:

                  which I want to save to a .txt file such that the file looks like:

                  1 2 3
                  

                  如果我使用 numpy.savetxt,那么我会得到一个类似的文件:

                  If I use numpy.savetxt then I get a file like:

                  1
                  2
                  3
                  

                  我想应该有一个简单的解决方案,有什么建议吗?

                  There should be a easy solution to this I suppose, any suggestions?

                  推荐答案

                  如果numpy >= 1.5,你可以这样做:

                  #注意文件名用双引号括起来,
                  # 示例文件名.txt"

                  # note that the filename is enclosed with double quotes,
                  # example "filename.txt"

                  numpy.savetxt("filename", a, newline=" ")
                  

                  编辑

                  几个长度相同的一维数组

                  several 1D arrays with same length

                  a = numpy.array([1,2,3])
                  b = numpy.array([4,5,6])
                  numpy.savetxt(filename, (a,b), fmt="%d")
                  
                  # gives:
                  # 1 2 3
                  # 4 5 6
                  

                  几个可变长度的一维数组

                  several 1D arrays with variable length

                  a = numpy.array([1,2,3])
                  b = numpy.array([4,5])
                  
                  with open(filename,"w") as f:
                      f.write("
                  ".join(" ".join(map(str, x)) for x in (a,b)))
                  
                  # gives:
                  # 1 2 3
                  # 4 5
                  

                  这篇关于将numpy数组逐行保存到txt文件的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                  Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)
                  <tfoot id='hujxL'></tfoot>
                    <tbody id='hujxL'></tbody>

                        • <small id='hujxL'></small><noframes id='hujxL'>

                          <i id='hujxL'><tr id='hujxL'><dt id='hujxL'><q id='hujxL'><span id='hujxL'><b id='hujxL'><form id='hujxL'><ins id='hujxL'></ins><ul id='hujxL'></ul><sub id='hujxL'></sub></form><legend id='hujxL'></legend><bdo id='hujxL'><pre id='hujxL'><center id='hujxL'></center></pre></bdo></b><th id='hujxL'></th></span></q></dt></tr></i><div id='hujxL'><tfoot id='hujxL'></tfoot><dl id='hujxL'><fieldset id='hujxL'></fieldset></dl></div>
                            <bdo id='hujxL'></bdo><ul id='hujxL'></ul>

                          • <legend id='hujxL'><style id='hujxL'><dir id='hujxL'><q id='hujxL'></q></dir></style></legend>