<i id='8JLJM'><tr id='8JLJM'><dt id='8JLJM'><q id='8JLJM'><span id='8JLJM'><b id='8JLJM'><form id='8JLJM'><ins id='8JLJM'></ins><ul id='8JLJM'></ul><sub id='8JLJM'></sub></form><legend id='8JLJM'></legend><bdo id='8JLJM'><pre id='8JLJM'><center id='8JLJM'></center></pre></bdo></b><th id='8JLJM'></th></span></q></dt></tr></i><div id='8JLJM'><tfoot id='8JLJM'></tfoot><dl id='8JLJM'><fieldset id='8JLJM'></fieldset></dl></div>
      • <bdo id='8JLJM'></bdo><ul id='8JLJM'></ul>
      <tfoot id='8JLJM'></tfoot>
      <legend id='8JLJM'><style id='8JLJM'><dir id='8JLJM'><q id='8JLJM'></q></dir></style></legend>

      <small id='8JLJM'></small><noframes id='8JLJM'>

    1. 是否有与 NumPy 的省略号切片语法 (...) 等效的 Julia?

      Is there a Julia equivalent to NumPy#39;s ellipsis slicing syntax (...)?(是否有与 NumPy 的省略号切片语法 (...) 等效的 Julia?)

            <tbody id='ZfwSI'></tbody>
          <i id='ZfwSI'><tr id='ZfwSI'><dt id='ZfwSI'><q id='ZfwSI'><span id='ZfwSI'><b id='ZfwSI'><form id='ZfwSI'><ins id='ZfwSI'></ins><ul id='ZfwSI'></ul><sub id='ZfwSI'></sub></form><legend id='ZfwSI'></legend><bdo id='ZfwSI'><pre id='ZfwSI'><center id='ZfwSI'></center></pre></bdo></b><th id='ZfwSI'></th></span></q></dt></tr></i><div id='ZfwSI'><tfoot id='ZfwSI'></tfoot><dl id='ZfwSI'><fieldset id='ZfwSI'></fieldset></dl></div>
            <bdo id='ZfwSI'></bdo><ul id='ZfwSI'></ul>
          • <tfoot id='ZfwSI'></tfoot>
            • <legend id='ZfwSI'><style id='ZfwSI'><dir id='ZfwSI'><q id='ZfwSI'></q></dir></style></legend>

                <small id='ZfwSI'></small><noframes id='ZfwSI'>

                本文介绍了是否有与 NumPy 的省略号切片语法 (...) 等效的 Julia?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                在 NumPy 中,省略号语法 用于

                In NumPy, the ellipsis syntax is for

                填写多个:,直到切片说明符的个数与数组的维度相匹配.

                filling in a number of : until the number of slicing specifiers matches the dimension of the array.

                (转述这个答案).

                我如何在 Julia 中做到这一点?

                How can I do that in Julia?

                推荐答案

                还没有,但如果你愿意,你可以自己动手.

                Not yet, but you can help yourself if you want.

                    import Base.getindex, Base.setindex!
                    const .. = Val{:...}
                
                    setindex!{T}(A::AbstractArray{T,1}, x, ::Type{Val{:...}}, n) = A[n] = x
                    setindex!{T}(A::AbstractArray{T,2}, x, ::Type{Val{:...}}, n) = A[ :, n] = x
                    setindex!{T}(A::AbstractArray{T,3}, x, ::Type{Val{:...}}, n) = A[ :, :, n] =x
                
                    getindex{T}(A::AbstractArray{T,1}, ::Type{Val{:...}}, n) = A[n]
                    getindex{T}(A::AbstractArray{T,2}, ::Type{Val{:...}}, n) = A[ :, n]
                    getindex{T}(A::AbstractArray{T,3}, ::Type{Val{:...}}, n) = A[ :, :, n]
                

                那你就可以写了

                    > rand(3,3,3)[.., 1]
                    3x3 Array{Float64,2}:
                     0.0750793  0.490528  0.273044
                     0.470398   0.461376  0.01372 
                     0.311559   0.879684  0.531157
                

                如果您想要更精细的切片,您需要生成/扩展定义或使用分段函数.

                If you want more elaborate slicing, you need to generate/expand the definition or use staged functions.

                如今,请参阅 https://github.com/ChrisRackauckas/EllipsisNotation.jl

                这篇关于是否有与 NumPy 的省略号切片语法 (...) 等效的 Julia?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                <i id='uxjSq'><tr id='uxjSq'><dt id='uxjSq'><q id='uxjSq'><span id='uxjSq'><b id='uxjSq'><form id='uxjSq'><ins id='uxjSq'></ins><ul id='uxjSq'></ul><sub id='uxjSq'></sub></form><legend id='uxjSq'></legend><bdo id='uxjSq'><pre id='uxjSq'><center id='uxjSq'></center></pre></bdo></b><th id='uxjSq'></th></span></q></dt></tr></i><div id='uxjSq'><tfoot id='uxjSq'></tfoot><dl id='uxjSq'><fieldset id='uxjSq'></fieldset></dl></div>

                      <tbody id='uxjSq'></tbody>

                    <small id='uxjSq'></small><noframes id='uxjSq'>

                      <legend id='uxjSq'><style id='uxjSq'><dir id='uxjSq'><q id='uxjSq'></q></dir></style></legend>

                        <bdo id='uxjSq'></bdo><ul id='uxjSq'></ul>

                        <tfoot id='uxjSq'></tfoot>