范围(len(list))还是枚举(list)?

2023-10-19Python开发问题
1

本文介绍了范围(len(list))还是枚举(list)?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

可能重复:
只需要索引:枚举或(x)范围?

哪些会被认为更好/更清晰/更快/更Pythonic"?我不关心列表L的内容,只关心它有多长.

Which of these would be considered better/clearer/faster/more 'Pythonic'? I don't care about the content of the list L, just how long it is.

a = [f(n) for n, _ in enumerate(L)]

a = [f(n) for n in range(len(L))]

如果有什么不同,f 函数也会使用 len(list).

If it makes any difference, the function f makes use of len(list) as well.

推荐答案

一些快速的计时运行似乎给使用 range() 的第二个选项比 enumerate():

Some quick timing runs seem to give the 2nd option using range() a slight edge over enumerate():

timeit a = [f(n) for n, _ in enumerate(mlist)]
10000 loops, best of 3: 118 us per loop

timeit a = [f(n) for n in range(len(mlist))]
10000 loops, best of 3: 102 us per loop

只是为了好玩,使用 xrange() (Python v2.7.2)

and just for fun using xrange() (Python v2.7.2)

timeit a = [f(n) for n in xrange(len(mlist))]
10000 loops, best of 3: 99 us per loop

我倾向于首先使用可读代码,然后使用 xrange()(如果可用)(即 Pre-Python v 3.x),然后是 range()enumerate().

I would favor readable code first, then using xrange() if available (i.e., Pre-Python v 3.x), followed by range() and enumerate().

这篇关于范围(len(list))还是枚举(list)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11