1. <tfoot id='LdxXm'></tfoot>
        <bdo id='LdxXm'></bdo><ul id='LdxXm'></ul>

    2. <small id='LdxXm'></small><noframes id='LdxXm'>

      1. <i id='LdxXm'><tr id='LdxXm'><dt id='LdxXm'><q id='LdxXm'><span id='LdxXm'><b id='LdxXm'><form id='LdxXm'><ins id='LdxXm'></ins><ul id='LdxXm'></ul><sub id='LdxXm'></sub></form><legend id='LdxXm'></legend><bdo id='LdxXm'><pre id='LdxXm'><center id='LdxXm'></center></pre></bdo></b><th id='LdxXm'></th></span></q></dt></tr></i><div id='LdxXm'><tfoot id='LdxXm'></tfoot><dl id='LdxXm'><fieldset id='LdxXm'></fieldset></dl></div>
      2. <legend id='LdxXm'><style id='LdxXm'><dir id='LdxXm'><q id='LdxXm'></q></dir></style></legend>
      3. Pandas 中的多索引旋转

        Multi-index pivoting in Pandas(Pandas 中的多索引旋转)

          <i id='sFUVZ'><tr id='sFUVZ'><dt id='sFUVZ'><q id='sFUVZ'><span id='sFUVZ'><b id='sFUVZ'><form id='sFUVZ'><ins id='sFUVZ'></ins><ul id='sFUVZ'></ul><sub id='sFUVZ'></sub></form><legend id='sFUVZ'></legend><bdo id='sFUVZ'><pre id='sFUVZ'><center id='sFUVZ'></center></pre></bdo></b><th id='sFUVZ'></th></span></q></dt></tr></i><div id='sFUVZ'><tfoot id='sFUVZ'></tfoot><dl id='sFUVZ'><fieldset id='sFUVZ'></fieldset></dl></div>
        • <small id='sFUVZ'></small><noframes id='sFUVZ'>

        • <legend id='sFUVZ'><style id='sFUVZ'><dir id='sFUVZ'><q id='sFUVZ'></q></dir></style></legend>
          • <tfoot id='sFUVZ'></tfoot>
            • <bdo id='sFUVZ'></bdo><ul id='sFUVZ'></ul>

                  <tbody id='sFUVZ'></tbody>

                  本文介绍了Pandas 中的多索引旋转的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  考虑以下数据框:

                           item_id  hour    when        date      quantity
                  110   0YrKNYeEoa     1  before  2015-01-26        247286
                  111   0UMNiXI7op     1  before  2015-01-26        602001
                  112   0QBtIMN3AH     1  before  2015-01-26        981630
                  113   0GuKXLiWyV     1  after   2015-01-26       2203913
                  114   0SoFbjvXTs     1  after   2015-01-26        660183
                  115   0UkT257SXj     1  before  2015-01-26        689332
                  116   0RPjXnkiGx     1  after   2015-01-26        283090
                  117   0FhJ9RGsLT     1  before  2015-01-26       2024256
                  118   0FhGJ4MFlg     1  before  2015-01-26         74524
                  119   0FQhHZRXhB     1  before  2015-01-26             0
                  120   0FsSdJQlTB     1  before  2015-01-26             0
                  121   0FrrAzTFHE     1  before  2015-01-26             0
                  122   0FfkgBdMHi     1  before  2015-01-26             0
                  123   0FOnJNexRn     1  before  2015-01-26             0
                  124   0FcWhIdBds     1  before  2015-01-26             0
                  125   0F2lr0cL9t     1  before  2015-01-26       1787659
                  

                  我想旋转它以使表格排列为:

                  I would like to pivot it to get the table arranged as:

                  Index                     before           after
                  (item_id, hour, date)   quantityB      quantityA
                  

                  当我尝试:

                  df.pivot(index=['item_id', 'hour', 'date'], columns='when', values='quanty')
                  

                  我明白了:

                  ValueError: Wrong number of items passed 8143, placement implies 3
                  

                  为什么?

                  推荐答案

                  如果我明白你在问什么,我想你想要的是 pandas.pivot_table(...) ,你可以像这样使用所以:

                  If I understand what you are asking I think what you want is pandas.pivot_table(...) which you can use like so:

                  table = pd.pivot_table(df, index=['item_id', 'hour', 'date'], columns='when', values='quantity')
                  

                  其中有一个样本数据框

                      item_id  hour  when      date     quantity
                  0       a     1  before  2015-01-26        25
                  1       b     1  before  2015-01-26        14
                  2       a     1   after  2015-01-26         4
                  3       d     1  before  2015-01-26        43
                  4       b     1   after  2015-01-26        30
                  5       d     1   after  2015-01-26        12
                  

                  生产

                  when                     after  before
                  item_id hour date                     
                  a       1    2015-01-26      4      25
                  b       1    2015-01-26     30      14
                  d       1    2015-01-26     12      43
                  

                  这篇关于Pandas 中的多索引旋转的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)

                  <small id='B7rtd'></small><noframes id='B7rtd'>

                  • <bdo id='B7rtd'></bdo><ul id='B7rtd'></ul>
                      <tbody id='B7rtd'></tbody>

                  • <i id='B7rtd'><tr id='B7rtd'><dt id='B7rtd'><q id='B7rtd'><span id='B7rtd'><b id='B7rtd'><form id='B7rtd'><ins id='B7rtd'></ins><ul id='B7rtd'></ul><sub id='B7rtd'></sub></form><legend id='B7rtd'></legend><bdo id='B7rtd'><pre id='B7rtd'><center id='B7rtd'></center></pre></bdo></b><th id='B7rtd'></th></span></q></dt></tr></i><div id='B7rtd'><tfoot id='B7rtd'></tfoot><dl id='B7rtd'><fieldset id='B7rtd'></fieldset></dl></div>

                    <legend id='B7rtd'><style id='B7rtd'><dir id='B7rtd'><q id='B7rtd'></q></dir></style></legend>
                            <tfoot id='B7rtd'></tfoot>