<legend id='8SFpd'><style id='8SFpd'><dir id='8SFpd'><q id='8SFpd'></q></dir></style></legend>
      <i id='8SFpd'><tr id='8SFpd'><dt id='8SFpd'><q id='8SFpd'><span id='8SFpd'><b id='8SFpd'><form id='8SFpd'><ins id='8SFpd'></ins><ul id='8SFpd'></ul><sub id='8SFpd'></sub></form><legend id='8SFpd'></legend><bdo id='8SFpd'><pre id='8SFpd'><center id='8SFpd'></center></pre></bdo></b><th id='8SFpd'></th></span></q></dt></tr></i><div id='8SFpd'><tfoot id='8SFpd'></tfoot><dl id='8SFpd'><fieldset id='8SFpd'></fieldset></dl></div>

      <tfoot id='8SFpd'></tfoot>

      <small id='8SFpd'></small><noframes id='8SFpd'>

      • <bdo id='8SFpd'></bdo><ul id='8SFpd'></ul>

      将 pandas DataFrame 旋转为正确的格式:`DataError: No numeric types to

      Pivot a pandas DataFrame to be the correct format: `DataError: No numeric types to aggregate`(将 pandas DataFrame 旋转为正确的格式:`DataError: No numeric types to aggregate`)

      <tfoot id='cuVj6'></tfoot>

            <bdo id='cuVj6'></bdo><ul id='cuVj6'></ul>
            <i id='cuVj6'><tr id='cuVj6'><dt id='cuVj6'><q id='cuVj6'><span id='cuVj6'><b id='cuVj6'><form id='cuVj6'><ins id='cuVj6'></ins><ul id='cuVj6'></ul><sub id='cuVj6'></sub></form><legend id='cuVj6'></legend><bdo id='cuVj6'><pre id='cuVj6'><center id='cuVj6'></center></pre></bdo></b><th id='cuVj6'></th></span></q></dt></tr></i><div id='cuVj6'><tfoot id='cuVj6'></tfoot><dl id='cuVj6'><fieldset id='cuVj6'></fieldset></dl></div>
                <tbody id='cuVj6'></tbody>
            • <small id='cuVj6'></small><noframes id='cuVj6'>

              • <legend id='cuVj6'><style id='cuVj6'><dir id='cuVj6'><q id='cuVj6'></q></dir></style></legend>
              • 本文介绍了将 pandas DataFrame 旋转为正确的格式:`DataError: No numeric types to aggregate`的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                这是我想要操作的 pandas DataFrame:

                Here is a pandas DataFrame I would like to manipulate:

                import pandas as pd
                
                data = {"grouping": ["item1", "item1", "item1", "item2", "item2", "item2", "item2", ...],
                        "labels": ["A", "B", "C", "A", "B", "C", "D", ...],
                        "count": [5, 1, 8, 3, 731, 189, 9, ...]}
                
                df = pd.DataFrame(data)
                
                print(df)
                >>>   grouping            labels       count
                0        item1             A            5
                1        item1             B            1
                2        item1             C            8
                3        item2             A            3
                4        item2             B          731
                5        item2             C          189
                6        item2             D            9
                7        ...               ...         ....
                

                我想将此数据框展开"为以下格式:

                I would like to "unfold" this dataframe into the following format:

                grouping    A    B    C    D
                item1       5    1    8    3
                item2       3    731  189  9
                ....        ........
                

                如何做到这一点?我认为这会起作用:

                How would one do this? I would think that this would work:

                pd.pivot_table(df,index=["grouping", "labels"]
                

                但我收到以下错误:

                DataError: No numeric types to aggregate
                

                推荐答案

                有四种惯用的 pandas 方法可以做到这一点.

                There are four idiomatic pandas ways to do this.

                • 分组列之间没有重复.不需要聚合
                  • 枢轴
                  • set_index
                  • 数据透视表
                  • 分组方式

                  枢轴

                  df.pivot('grouping', 'labels', 'count')
                  

                  set_index

                  df.set_index(['grouping', 'labels'])['count'].unstack()
                  

                  pivot_table

                  df.pivot_table('count', 'grouping', 'labels')
                  

                  groupby

                  df.groupby(['grouping', 'labels'])['count'].sum().unstack()
                  

                  全部收益

                  labels      A      B      C    D
                  grouping                        
                  item1     5.0    1.0    8.0  NaN
                  item2     3.0  731.0  189.0  9.0
                  

                  时机

                  使用 groupbyset_indexpivot_table 方法,您可以使用 fill_value=0

                  With the groupby, set_index, or pivot_table approach, you can easily fill in missing values with fill_value=0

                  df.pivot_table('count', 'grouping', 'labels', fill_value=0)
                  
                  df.groupby(['grouping', 'labels'])['count'].sum().unstack(fill_value=0)
                  
                  df.set_index(['grouping', 'labels'])['count'].sum().unstack(fill_value=0)
                  

                  全部收益

                  labels    A    B    C  D
                  grouping                
                  item1     5    1    8  0
                  item2     3  731  189  9
                  

                  <小时>

                  关于groupby的其他想法

                  因为我们不需要任何聚合.如果我们想使用 groupby,我们可以通过使用影响较小的聚合器来最小化隐式聚合的影响.

                  Because we don't require any aggregation. If we wanted to use groupby, we can minimize the impact of the implicit aggregation by utilizing a less impactful aggregator.

                  df.groupby(['grouping', 'labels'])['count'].max().unstack()
                  

                  df.groupby(['grouping', 'labels'])['count'].first().unstack()
                  

                  定时groupby

                  这篇关于将 pandas DataFrame 旋转为正确的格式:`DataError: No numeric types to aggregate`的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                <tfoot id='R68CO'></tfoot>
                  <tbody id='R68CO'></tbody>

                  <bdo id='R68CO'></bdo><ul id='R68CO'></ul>

                  <small id='R68CO'></small><noframes id='R68CO'>

                    1. <i id='R68CO'><tr id='R68CO'><dt id='R68CO'><q id='R68CO'><span id='R68CO'><b id='R68CO'><form id='R68CO'><ins id='R68CO'></ins><ul id='R68CO'></ul><sub id='R68CO'></sub></form><legend id='R68CO'></legend><bdo id='R68CO'><pre id='R68CO'><center id='R68CO'></center></pre></bdo></b><th id='R68CO'></th></span></q></dt></tr></i><div id='R68CO'><tfoot id='R68CO'></tfoot><dl id='R68CO'><fieldset id='R68CO'></fieldset></dl></div>

                        • <legend id='R68CO'><style id='R68CO'><dir id='R68CO'><q id='R68CO'></q></dir></style></legend>