<tfoot id='RLvQe'></tfoot>

  • <legend id='RLvQe'><style id='RLvQe'><dir id='RLvQe'><q id='RLvQe'></q></dir></style></legend>

        <bdo id='RLvQe'></bdo><ul id='RLvQe'></ul>

        <i id='RLvQe'><tr id='RLvQe'><dt id='RLvQe'><q id='RLvQe'><span id='RLvQe'><b id='RLvQe'><form id='RLvQe'><ins id='RLvQe'></ins><ul id='RLvQe'></ul><sub id='RLvQe'></sub></form><legend id='RLvQe'></legend><bdo id='RLvQe'><pre id='RLvQe'><center id='RLvQe'></center></pre></bdo></b><th id='RLvQe'></th></span></q></dt></tr></i><div id='RLvQe'><tfoot id='RLvQe'></tfoot><dl id='RLvQe'><fieldset id='RLvQe'></fieldset></dl></div>
      1. <small id='RLvQe'></small><noframes id='RLvQe'>

        Pandas,来自 2 列的数据透视表,其值为其中一列的计数

        Pandas, Pivot table from 2 columns with values being a count of one of those columns(Pandas,来自 2 列的数据透视表,其值为其中一列的计数)
          <tbody id='nZHQy'></tbody>
          <i id='nZHQy'><tr id='nZHQy'><dt id='nZHQy'><q id='nZHQy'><span id='nZHQy'><b id='nZHQy'><form id='nZHQy'><ins id='nZHQy'></ins><ul id='nZHQy'></ul><sub id='nZHQy'></sub></form><legend id='nZHQy'></legend><bdo id='nZHQy'><pre id='nZHQy'><center id='nZHQy'></center></pre></bdo></b><th id='nZHQy'></th></span></q></dt></tr></i><div id='nZHQy'><tfoot id='nZHQy'></tfoot><dl id='nZHQy'><fieldset id='nZHQy'></fieldset></dl></div>
          • <small id='nZHQy'></small><noframes id='nZHQy'>

          • <legend id='nZHQy'><style id='nZHQy'><dir id='nZHQy'><q id='nZHQy'></q></dir></style></legend>

                <tfoot id='nZHQy'></tfoot>

                  <bdo id='nZHQy'></bdo><ul id='nZHQy'></ul>
                • 本文介绍了Pandas,来自 2 列的数据透视表,其值为其中一列的计数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有一个熊猫数据框:

                  +---------------+-------------+
                  | Test_Category | Test_Result |
                  +---------------+-------------+
                  | Cat_1         | Pass        |
                  | Cat_1         | N/A         |
                  | Cat_2         | Fail        |
                  | Cat_2         | Fail        |
                  | Cat_3         | Pass        |
                  | Cat_3         | Pass        |
                  | Cat_3         | Fail        |
                  | Cat_3         | N/A         |
                  +---------------+-------------+
                  

                  我需要这样的表:

                  +------+------+------+-----+
                  |      | Pass | Fail | N/A |
                  +------+------+------+-----+
                  | Cat1 |    1 |      |   1 |
                  | Cat2 |      |    2 |     |
                  | Cat3 |    2 |    1 |   1 |
                  +------+------+------+-----+
                  

                  我尝试使用 Pivot,但不知道如何让它计算 Test_Result 列中的出现次数并将它们作为值放入数据透视结果中.

                  I tried using a Pivot, but can't figure out how to make it count occurrences from Test_Result column and put them as values into pivot result.

                  谢谢!

                  推荐答案

                  这里是问题 NaN 值被排除,所以必须使用 fillnacrosstab:

                  Here is problem NaN values are exluded, so necessary use fillna with crosstab:

                  df1 = pd.crosstab(df['Test_Category'], df['Test_Result'].fillna('n/a'))
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1             0     1    1
                  Cat_2             2     0    0
                  Cat_3             1     2    1
                  

                  或使用 GroupBy.sizeunstack 用于重塑:

                  Or use GroupBy.size with unstack for reshape:

                  df['Test_Result'] = df['Test_Result'].fillna('n/a')
                  
                  df1 = df.groupby(['Test_Category','Test_Result']).size().unstack()
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1           NaN   1.0  1.0
                  Cat_2           2.0   NaN  NaN
                  Cat_3           1.0   2.0  1.0
                  

                  <小时>

                  df1 = df.groupby(['Test_Category','Test_Result']).size().unstack(fill_value=0)
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1             0     1    1
                  Cat_2             2     0    0
                  Cat_3             1     2    1
                  

                  另一种解决方案 pivot_table:

                  Another solution with pivot_table:

                  df = df.pivot_table(index='Test_Category',columns='Test_Result', aggfunc='size')
                  

                  这篇关于Pandas,来自 2 列的数据透视表,其值为其中一列的计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)

                  1. <i id='KuHQO'><tr id='KuHQO'><dt id='KuHQO'><q id='KuHQO'><span id='KuHQO'><b id='KuHQO'><form id='KuHQO'><ins id='KuHQO'></ins><ul id='KuHQO'></ul><sub id='KuHQO'></sub></form><legend id='KuHQO'></legend><bdo id='KuHQO'><pre id='KuHQO'><center id='KuHQO'></center></pre></bdo></b><th id='KuHQO'></th></span></q></dt></tr></i><div id='KuHQO'><tfoot id='KuHQO'></tfoot><dl id='KuHQO'><fieldset id='KuHQO'></fieldset></dl></div>
                      <tbody id='KuHQO'></tbody>

                        • <bdo id='KuHQO'></bdo><ul id='KuHQO'></ul>
                            <tfoot id='KuHQO'></tfoot>

                            <small id='KuHQO'></small><noframes id='KuHQO'>

                            <legend id='KuHQO'><style id='KuHQO'><dir id='KuHQO'><q id='KuHQO'></q></dir></style></legend>