• <tfoot id='Am4bE'></tfoot>

    <small id='Am4bE'></small><noframes id='Am4bE'>

  • <i id='Am4bE'><tr id='Am4bE'><dt id='Am4bE'><q id='Am4bE'><span id='Am4bE'><b id='Am4bE'><form id='Am4bE'><ins id='Am4bE'></ins><ul id='Am4bE'></ul><sub id='Am4bE'></sub></form><legend id='Am4bE'></legend><bdo id='Am4bE'><pre id='Am4bE'><center id='Am4bE'></center></pre></bdo></b><th id='Am4bE'></th></span></q></dt></tr></i><div id='Am4bE'><tfoot id='Am4bE'></tfoot><dl id='Am4bE'><fieldset id='Am4bE'></fieldset></dl></div>
      <legend id='Am4bE'><style id='Am4bE'><dir id='Am4bE'><q id='Am4bE'></q></dir></style></legend>
      • <bdo id='Am4bE'></bdo><ul id='Am4bE'></ul>

        Pandas - 按列分组并将数据转换为 numpy 数组

        Pandas - group by column and transform the data to numpy array(Pandas - 按列分组并将数据转换为 numpy 数组)
        <tfoot id='Drd4T'></tfoot>
        <i id='Drd4T'><tr id='Drd4T'><dt id='Drd4T'><q id='Drd4T'><span id='Drd4T'><b id='Drd4T'><form id='Drd4T'><ins id='Drd4T'></ins><ul id='Drd4T'></ul><sub id='Drd4T'></sub></form><legend id='Drd4T'></legend><bdo id='Drd4T'><pre id='Drd4T'><center id='Drd4T'></center></pre></bdo></b><th id='Drd4T'></th></span></q></dt></tr></i><div id='Drd4T'><tfoot id='Drd4T'></tfoot><dl id='Drd4T'><fieldset id='Drd4T'></fieldset></dl></div>
      1. <legend id='Drd4T'><style id='Drd4T'><dir id='Drd4T'><q id='Drd4T'></q></dir></style></legend>
          <bdo id='Drd4T'></bdo><ul id='Drd4T'></ul>
            <tbody id='Drd4T'></tbody>

            <small id='Drd4T'></small><noframes id='Drd4T'>

                  本文介绍了Pandas - 按列分组并将数据转换为 numpy 数组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  Having the following data frame, group A have 4 samples, B 3 samples and C 1 sample:

                    group   data_1   data_2
                  0     A        1        4
                  1     A        2        5
                  2     A        3        6
                  3     A        4        7
                  4     B        1        4
                  5     B        2        5
                  6     B        3        6
                  7     C        1        4
                  

                  I would like to transform the data into numpy array, where each row is a group with all its samples and zero padding for groups that have fewer samples.

                  Resulting in an array like so:

                  [
                     [[1,4],[2,5],[3,6],[4,7]], # this is A group 4 samples
                     [[1,4],[2,5],[3,6],[0,0]], # this is B group 3 samples
                     [[1,4],[0,0],[0,0],[0,0]], # this is C group 1 sample
                  ]
                  

                  解决方案

                  First is necessary add missing values - first solution with unstack and stack, counter Series is created by cumcount.

                  Second solution use reindex by MultiIndex.

                  Last use lambda function with groupby, convert to numpy array by values and last to lists:

                  g = df.groupby('group').cumcount()
                  L = (df.set_index(['group',g])
                         .unstack(fill_value=0)
                         .stack().groupby(level=0)
                         .apply(lambda x: x.values.tolist())
                         .tolist())
                  print (L)
                  
                  [[[1, 4], [2, 5], [3, 6], [4, 7]], 
                   [[1, 4], [2, 5], [3, 6], [0, 0]], 
                   [[1, 4], [0, 0], [0, 0], [0, 0]]]
                  

                  Another solution:

                  g = df.groupby('group').cumcount()
                  mux = pd.MultiIndex.from_product([df['group'].unique(), g.unique()])
                  L = (df.set_index(['group',g])
                         .reindex(mux, fill_value=0)
                         .groupby(level=0)['data_1','data_2']
                         .apply(lambda x: x.values.tolist())
                         .tolist()
                  )
                  

                  这篇关于Pandas - 按列分组并将数据转换为 numpy 数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)

                      • <bdo id='CvLT6'></bdo><ul id='CvLT6'></ul>

                        <i id='CvLT6'><tr id='CvLT6'><dt id='CvLT6'><q id='CvLT6'><span id='CvLT6'><b id='CvLT6'><form id='CvLT6'><ins id='CvLT6'></ins><ul id='CvLT6'></ul><sub id='CvLT6'></sub></form><legend id='CvLT6'></legend><bdo id='CvLT6'><pre id='CvLT6'><center id='CvLT6'></center></pre></bdo></b><th id='CvLT6'></th></span></q></dt></tr></i><div id='CvLT6'><tfoot id='CvLT6'></tfoot><dl id='CvLT6'><fieldset id='CvLT6'></fieldset></dl></div>

                          <small id='CvLT6'></small><noframes id='CvLT6'>

                            <tbody id='CvLT6'></tbody>
                        • <legend id='CvLT6'><style id='CvLT6'><dir id='CvLT6'><q id='CvLT6'></q></dir></style></legend><tfoot id='CvLT6'></tfoot>