range() 用于浮点数

2023-11-08Python开发问题
3

本文介绍了range() 用于浮点数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

Is there a range() equivalent for floats in Python?

>>> range(0.5,5,1.5)
[0, 1, 2, 3, 4]
>>> range(0.5,5,0.5)

Traceback (most recent call last):
  File "<pyshell#10>", line 1, in <module>
    range(0.5,5,0.5)
ValueError: range() step argument must not be zero

解决方案

I don't know a built-in function, but writing one like [this](https://stackoverflow.com/a/477610/623735) shouldn't be too complicated.

def frange(x, y, jump):
  while x < y:
    yield x
    x += jump

---

As the comments mention, this could produce unpredictable results like:

>>> list(frange(0, 100, 0.1))[-1]
99.9999999999986

To get the expected result, you can use one of the other answers in this question, or as @Tadhg mentioned, you can use decimal.Decimal as the jump argument. Make sure to initialize it with a string rather than a float.

>>> import decimal
>>> list(frange(0, 100, decimal.Decimal('0.1')))[-1]
Decimal('99.9')

Or even:

import decimal

def drange(x, y, jump):
  while x < y:
    yield float(x)
    x += decimal.Decimal(jump)

And then:

>>> list(drange(0, 100, '0.1'))[-1]
99.9

[editor's not: if you only use positive jump and integer start and stop (x and y) , this works fine. For a more general solution see here.]

这篇关于range() 用于浮点数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11