Django 可选 url 参数

2024-04-21Python开发问题
6

本文介绍了Django 可选 url 参数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

I have a Django URL like this:

url(
    r'^project_config/(?P<product>w+)/(?P<project_id>w+)/$',
    'tool.views.ProjectConfig',
    name='project_config'
),

views.py:

def ProjectConfig(request, product, project_id=None, template_name='project.html'):
    ...
    # do stuff

The problem is that I want the project_id parameter to be optional.

I want /project_config/ and /project_config/12345abdce/ to be equally valid URL patterns, so that if project_id is passed, then I can use it.

As it stands at the moment, I get a 404 when I access the URL without the project_id parameter.

解决方案

There are several approaches.

One is to use a non-capturing group in the regex: (?:/(?P<title>[a-zA-Z]+)/)?
Making a Regex Django URL Token Optional

Another, easier to follow way is to have multiple rules that matches your needs, all pointing to the same view.

urlpatterns = patterns('',
    url(r'^project_config/$', views.foo),
    url(r'^project_config/(?P<product>w+)/$', views.foo),
    url(r'^project_config/(?P<product>w+)/(?P<project_id>w+)/$', views.foo),
)

Keep in mind that in your view you'll also need to set a default for the optional URL parameter, or you'll get an error:

def foo(request, optional_parameter=''):
    # Your code goes here

这篇关于Django 可选 url 参数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11