TypeError:在字符串格式化python期间并非所有参数都转换了

2024-04-21Python开发问题
247

本文介绍了TypeError:在字符串格式化python期间并非所有参数都转换了的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

The program is supposed to take in two names, and if they are the same length it should check if they are the same word. If it's the same word it will print "The names are the same". If they are the same length but with different letters it will print "The names are different but the same length". The part I'm having a problem with is in the bottom 4 lines.

#!/usr/bin/env python
# Enter your code for "What's In (The Length Of) A Name?" here.
name1 = input("Enter name 1: ")
name2 = input("Enter name 2: ")
len(name1)
len(name2)
if len(name1) == len(name2):
    if name1 == name2:
        print ("The names are the same")
    else:
        print ("The names are different, but are the same length")
    if len(name1) > len(name2):
        print ("'{0}' is longer than '{1}'"% name1, name2)
    elif len(name1) < len(name2):
        print ("'{0}'is longer than '{1}'"% name2, name1)

When I run this code it displays:

Traceback (most recent call last):
  File "program.py", line 13, in <module>
    print ("'{0}' is longer than '{1}'"% name1, name2)
TypeError: not all arguments converted during string formatting

Any suggestions are highly appreciated.

解决方案

You're mixing different format functions.

The old-style % formatting uses % codes for formatting:

'It will cost $%d dollars.' % 95

The new-style {} formatting uses {} codes and the .format method

'It will cost ${0} dollars.'.format(95)

Note that with old-style formatting, you have to specify multiple arguments using a tuple:

'%d days and %d nights' % (40, 40)


In your case, since you're using {} format specifiers, use .format:

"'{0}' is longer than '{1}'".format(name1, name2)

这篇关于TypeError:在字符串格式化python期间并非所有参数都转换了的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11