如何将Disrerte值映射到海运中的热图?

2024-08-20Python开发问题
0

本文介绍了如何将Disrerte值映射到海运中的热图?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试使用Seborn绘制热图中的离散值。以下是我试图绘制的列表:

xa = [[5, 4, 4, 4, 13, 4, 4],
 [1, 9, 4, 3, 9, 1, 4],
 [4, 1, 7, 1, 5, 3, 7],
 [1, 9, 4, 3, 9, 5, 4],
 [2, 1, 4, 1, 9, 4, 3],
 [9, 4, 8, 1, 7, 1, 9],
 [4, 8, 1, 7, 1, 4, 8]]

以下是我用来绘制热图的代码:

import numpy as np
import seaborn as sns
from matplotlib.colors import ListedColormap
data = np.asarray(xa)
sns.heatmap( data,cmap=ListedColormap(['green', 'yellow', 'red']))

我的问题是如何将每个数字绘制成特定的颜色。取值范围为1-17。所以有17种不同的颜色,每个数字一种。我读了一些其他的答案,但没有一个谈到如何给一个数字赋一个特定值。谢谢!

推荐答案

如果我理解正确,您可以这样做:

import numpy as np
from matplotlib import pyplot as plt
import matplotlib.colors as c
data = np.asarray(xa)
colors = {"white":1, "gray":2, "yellow":3, "lightgreen":4, "green":5, "lightblue":6, "blue":7, "lightcoral":8, "red":9, "brown":10,
          "violet":11, "blueviolet":12, "indigo":13, "khaki":14, "orange":15, "pink":16, "black":17}
l_colors = sorted(colors, key=colors.get)
cMap = c.ListedColormap(l_colors)
fig, ax = plt.subplots()
ax.pcolor(data[::-1], cmap=cMap, vmin=1, vmax=len(colors))
# plt.axis('off') # if you don't want the axis
plt.show()

每个数字对应一种颜色,从1(白色)、2(灰色)到17(黑色)。如您所见,图像中没有黑色,因为您的数组中没有17,并且色彩映射表未标准化。

seaborn

data = np.asarray(xa)
colors = {"white":1,"gray":2,"yellow":3,"lightgreen":4, "green":5, "lightblue":6, "blue":7, "lightcoral":8, "red":9, "brown":10,
          "violet":11, "blueviolet":12,"indigo":13, "khaki":14, "orange":15, "pink":16, "black":17}
l_colors = sorted(colors, key=colors.get)
cMap = c.ListedColormap(l_colors)
sns.heatmap(data,cmap=l_colors, vmin=1, vmax=len(colors))

如果您想要图例上的所有刻度,请添加以下内容:

ax = sns.heatmap(data,cmap=l_colors, vmin=1, vmax=len(colors))
colorbar = ax.collections[0].colorbar
colorbar.set_ticks([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17])

这篇关于如何将Disrerte值映射到海运中的热图?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10