ValueError:endog必须在单位间隔内

2024-08-22Python开发问题
9

本文介绍了ValueError:endog必须在单位间隔内的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

在使用statsmodel时,我收到了这个奇怪的错误:ValueError: endog must be in the unit interval.有人能给我提供有关此错误的更多信息吗?谷歌帮不上忙。

产生错误的代码:

"""
Multiple regression with dummy variables. 
"""

import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np

df = pd.read_csv('cost_data.csv')
df.columns = ['Cost', 'R(t)', 'Day of Week']
dummy_ranks = pd.get_dummies(df['Day of Week'], prefix='days')
cols_to_keep = ['Cost', 'R(t)']
data = df[cols_to_keep].join(dummy_ranks.ix[:,'days_2':])
data['intercept'] = 1.0

print(data)

train_cols = data.columns[1:]
logit = sm.Logit(data['Cost'], data[train_cols])

result = logit.fit()

print(result.summary())

和回溯:

Traceback (most recent call last):
  File "multiple_regression_dummy.py", line 20, in <module>
    logit = sm.Logit(data['Cost'], data[train_cols])
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/statsmodels/discrete/discrete_model.py", line 404, in __init__
    raise ValueError("endog must be in the unit interval.")
ValueError: endog must be in the unit interval.

推荐答案

当我的目标列的值大于1时,我收到此错误。 请确保您的目标列介于0和1之间(这是Logistic回归所必需的),然后重试。 例如,如果目标列的值为1-5,则将4和5设为正类别,将1,2,3设为负类别。希望这能有所帮助。

这篇关于ValueError:endog必须在单位间隔内的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11