What is Adaptive average pooling and How does it work?(什么是自适应平均池,它是如何工作的?)
本文介绍了什么是自适应平均池,它是如何工作的?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
最近,当我尝试实现AlexNet时,我在Pytorch中遇到了一个方法。 我不明白它是怎么运作的。请举几个例子解释一下背后的想法。在神经网络功能方面,它与Maxpooling或Average Poling有何不同
nn.AdaptiveAvgPool2d((6,6))
推荐答案
在平均池化或最大池化中,基本上由您自己设置步长和内核大小,并将它们设置为超参数。如果您碰巧更改了输入大小,则必须重新配置它们。
另一方面,在自适应池中,我们改为指定输出大小。并自动选择步长和内核大小以适应需要。以下公式用于计算源代码中的值。Stride = (input_size//output_size)
Kernel size = input_size - (output_size-1)*stride
Padding = 0
这篇关于什么是自适应平均池,它是如何工作的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:什么是自适应平均池,它是如何工作的?


基础教程推荐
猜你喜欢
- 将 YAML 文件转换为 python dict 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01