How to solve a degenerate system of equations in sympy(如何用渐近法求解退化方程组)
本文介绍了如何用渐近法求解退化方程组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有很多方程组,有些没有详细说明,我想找一个非零解,如果它存在,或者报告说没有。然而,试图找到所有解决方案的症状似乎悬而未决。这里有一个极端的例子。
from sympy import *
A = Matrix([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
])
syms = symbols("x:12")
s = Matrix(syms)
constraints = [xi**3 - xi for xi in syms]
solve(list(A*s) + constraints, syms)
在这样的示例中,我如何才能快速报告一个非零解?事实上,如果它只报告有解决方案,我会很高兴。
推荐答案
为SymPy提供越来越难的系统(指定的0较少),并在得到解决方案时退出:
>>> def nonzsol(eqs, syms):
... from sympy import subsets
... for i in range(len(syms)-1,-1,-1):
... for z in subsets(syms, i):
... s, nontriv = solve(eqs + list(z), set=True)
... for v in nontriv:
... if any(v):
... return dict(zip(s, v))
...
>>>
>>> nonzsol(eqs, syms)
{x0: 0, x1: 0, x10: 0, x11: -1, x2: 0, x3: 0, x4: 0, x5: 0, x6: 0, x7: 0, x8: 0, x9: 0}
这篇关于如何用渐近法求解退化方程组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:如何用渐近法求解退化方程组


基础教程推荐
猜你喜欢
- 如何在Python中绘制多元函数? 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01