Pandas按周/月/年统计数据介绍 Pandas 按周.月.年.统计数据 介绍 将日期转为时间格式 并设置为索引 import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) print(data) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.s
Pandas 按周、月、年、统计数据
介绍
将日期转为时间格式 并设置为索引
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
print(data)
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data)
按周、月、季度、年统计数据
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data.resample('w').sum())
print(data.resample('m').sum())
print(data.resample('Q').sum())
print(data.resample('AS').sum())
使用to_period()方法 优化
按月、季度和年显示数据(不统计数据)
import pandas as pd
data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额'])
data['订单创建时间']=pd.to_datetime(data['订单创建时间'])
data=data.set_index('订单创建时间')
print(data.resample('w').sum().to_period('w'))
print(data.resample('m').sum().to_period('m'))
print(data.resample('q').sum().to_period('q'))
print(data.resample('as').sum().to_period('a'))
与之前相比 日期的显示方式发生了改变
到此这篇关于Pandas按周/月/年统计数据介绍的文章就介绍到这了,更多相关Pandas统计数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
沃梦达教程
本文标题为:Pandas按周/月/年统计数据介绍


基础教程推荐
猜你喜欢
- python的环境conda简介 2022-10-20
- centos系统 anaconda3(python3)安装pygrib 2023-09-04
- CentOS 7.5 安装 Python3.7 2023-09-03
- Centos7下安装python环境 2023-09-04
- ubuntu 18 python3.6 的安装与 python2的版本切换 2023-09-03
- 基于Python实现股票数据分析的可视化 2023-08-04
- Python爬取当网书籍数据并数据可视化展示 2023-08-11
- Python基础学习之函数和代码复用详解 2022-09-02
- 四步教你学会打包一个新的Python模块 2022-10-20
- Python 中 Elias Delta 编码详情 2023-08-08