1. <tfoot id='7PRj5'></tfoot>
      2. <small id='7PRj5'></small><noframes id='7PRj5'>

        <legend id='7PRj5'><style id='7PRj5'><dir id='7PRj5'><q id='7PRj5'></q></dir></style></legend>
        <i id='7PRj5'><tr id='7PRj5'><dt id='7PRj5'><q id='7PRj5'><span id='7PRj5'><b id='7PRj5'><form id='7PRj5'><ins id='7PRj5'></ins><ul id='7PRj5'></ul><sub id='7PRj5'></sub></form><legend id='7PRj5'></legend><bdo id='7PRj5'><pre id='7PRj5'><center id='7PRj5'></center></pre></bdo></b><th id='7PRj5'></th></span></q></dt></tr></i><div id='7PRj5'><tfoot id='7PRj5'></tfoot><dl id='7PRj5'><fieldset id='7PRj5'></fieldset></dl></div>
          <bdo id='7PRj5'></bdo><ul id='7PRj5'></ul>

        在 R 中按组连接列

        Concatenating a column by a group in R(在 R 中按组连接列)
          <tbody id='oijsd'></tbody>

          • <bdo id='oijsd'></bdo><ul id='oijsd'></ul>

            • <tfoot id='oijsd'></tfoot>
            • <legend id='oijsd'><style id='oijsd'><dir id='oijsd'><q id='oijsd'></q></dir></style></legend>

              <i id='oijsd'><tr id='oijsd'><dt id='oijsd'><q id='oijsd'><span id='oijsd'><b id='oijsd'><form id='oijsd'><ins id='oijsd'></ins><ul id='oijsd'></ul><sub id='oijsd'></sub></form><legend id='oijsd'></legend><bdo id='oijsd'><pre id='oijsd'><center id='oijsd'></center></pre></bdo></b><th id='oijsd'></th></span></q></dt></tr></i><div id='oijsd'><tfoot id='oijsd'></tfoot><dl id='oijsd'><fieldset id='oijsd'></fieldset></dl></div>

              <small id='oijsd'></small><noframes id='oijsd'>

                  本文介绍了在 R 中按组连接列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  假设我有这个员工列表:

                  Suppose I've got this employee list:

                   Dept Date      Name            
                  ----- --------- --------------- 
                     30 07-DEC-02 Raphaely        
                     30 18-MAY-03 Khoo            
                     40 07-JUN-02 Mavris          
                     50 01-MAY-03 Kaufling        
                     50 14-JUL-03 Ladwig          
                     70 07-JUN-02 Baer            
                     90 13-JAN-01 De Haan
                     90 17-JUN-03 King  
                    100 16-AUG-02 Faviet
                    100 17-AUG-02 Greenberg 
                    110 07-JUN-02 Gietz           
                    110 07-JUN-02 Higgins         
                  

                  我想要在 R 中按部门聚合列表(类似于 Oracle PL/SQL 的 LISTAGG 函数) 将生成最后一列:

                  I want a list aggregation by department in R (similar to Oracle PL/SQL's LISTAGG function) that would product this last column:

                   Dept Date      Name            Emp_list
                  ----- --------- --------------- ---------------------------------------------
                     30 07-DEC-02 Raphaely        Raphaely; Khoo
                     30 18-MAY-03 Khoo            Raphaely; Khoo
                     40 07-JUN-02 Mavris          Mavris
                     50 01-MAY-03 Kaufling        Kaufling; Ladwig
                     50 14-JUL-03 Ladwig          Kaufling; Ladwig
                     70 07-JUN-02 Baer            Baer
                     90 13-JAN-01 De Haan         De Haan; King
                     90 17-JUN-03 King            De Haan; King
                    100 16-AUG-02 Faviet          Faviet; Greenberg
                    100 17-AUG-02 Greenberg       Faviet; Greenberg
                    110 07-JUN-02 Gietz           Gietz; Higgins
                    110 07-JUN-02 Higgins         Gietz; Higgins
                  

                  有什么建议吗?

                  推荐答案

                  可以使用avepaste:

                  within(mydf, {
                    Emp_list <- ave(Name, Dept, FUN = function(x) paste(x, collapse = "; "))
                  })
                  #   Dept      Date      Name          Emp_list
                  # 1    30 07-DEC-02  Raphaely    Raphaely; Khoo
                  # 2    30 18-MAY-03      Khoo    Raphaely; Khoo
                  # 3    40 07-JUN-02    Mavris            Mavris
                  # 4    50 01-MAY-03  Kaufling  Kaufling; Ladwig
                  # 5    50 14-JUL-03    Ladwig  Kaufling; Ladwig
                  # 6    70 07-JUN-02      Baer              Baer
                  # 7    90 13-JAN-01   De Haan     De Haan; King
                  # 8    90 17-JUN-03      King     De Haan; King
                  # 9   100 16-AUG-02    Faviet Faviet; Greenberg
                  # 10  100 17-AUG-02 Greenberg Faviet; Greenberg
                  # 11  110 07-JUN-02     Gietz    Gietz; Higgins
                  # 12  110 07-JUN-02   Higgins    Gietz; Higgins
                  

                  这篇关于在 R 中按组连接列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  SQL query to group by day(按天分组的 SQL 查询)
                  What does SQL clause quot;GROUP BY 1quot; mean?(SQL 子句“GROUP BY 1是什么意思?意思是?)
                  MySQL groupwise MAX() returns unexpected results(MySQL groupwise MAX() 返回意外结果)
                  MySQL SELECT most frequent by group(MySQL SELECT 按组最频繁)
                  Include missing months in Group By query(在 Group By 查询中包含缺失的月份)
                  Why Mysql#39;s Group By and Oracle#39;s Group by behaviours are different(为什么 Mysql 的 Group By 和 Oracle 的 Group by 行为不同)
                  <legend id='3ftN8'><style id='3ftN8'><dir id='3ftN8'><q id='3ftN8'></q></dir></style></legend>
                    <i id='3ftN8'><tr id='3ftN8'><dt id='3ftN8'><q id='3ftN8'><span id='3ftN8'><b id='3ftN8'><form id='3ftN8'><ins id='3ftN8'></ins><ul id='3ftN8'></ul><sub id='3ftN8'></sub></form><legend id='3ftN8'></legend><bdo id='3ftN8'><pre id='3ftN8'><center id='3ftN8'></center></pre></bdo></b><th id='3ftN8'></th></span></q></dt></tr></i><div id='3ftN8'><tfoot id='3ftN8'></tfoot><dl id='3ftN8'><fieldset id='3ftN8'></fieldset></dl></div>
                      <bdo id='3ftN8'></bdo><ul id='3ftN8'></ul>

                    • <tfoot id='3ftN8'></tfoot>

                      <small id='3ftN8'></small><noframes id='3ftN8'>

                              <tbody id='3ftN8'></tbody>