使用 RSA 进行模乘会导致 Java Card 出错

Using RSA for modulo-multiplication leads to error on Java Card(使用 RSA 进行模乘会导致 Java Card 出错)
本文介绍了使用 RSA 进行模乘会导致 Java Card 出错的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

您好,我正在研究 Java Card 上的一个项目,这意味着很多模乘.我设法在这个平台上使用 RSA 密码系统实现了模乘,但它似乎适用于某些数字.

Hello I'm working on a project on Java Card which implies a lot of modulo-multiplication. I managed to implement an modulo-multiplication on this platform using RSA cryptosystem but it seems to work for certain numbers.

public byte[] modMultiply(byte[] x, short xOffset, short xLength, byte[] y,
        short yOffset, short yLength, short tempOutoffset) {

    //copy x value to temporary rambuffer
    Util.arrayCopy(x, xOffset, tempBuffer, tempOutoffset, xLength);


    // copy the y value to match th size of rsa_object
    Util.arrayFillNonAtomic(eempromTempBuffer, (short)0, (byte) (Configuration.LENGTH_RSAOBJECT_MODULUS-1),(byte)0x00);
    Util.arrayCopy(y,yOffset,eempromTempBuffer,(short)(Configuration.LENGTH_RSAOBJECT_MODULUS - yLength),yLength);

    // x+y
    if (JBigInteger.add(x,xOffset,xLength, eempromTempBuffer,
            (short)0,Configuration.LENGTH_MODULUS)) ;
    if(this.isGreater(x, xOffset, xLength, tempBuffer,Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS)>0)
    {
        JBigInteger.subtract(x,xOffset,xLength, tempBuffer,
                Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
    }

    //(x+y)2
    mRsaCipherForSquaring.init(mRsaPublicKekForSquare, Cipher.MODE_ENCRYPT);

    mRsaCipherForSquaring.doFinal(x, xOffset, Configuration.LENGTH_RSAOBJECT_MODULUS, x,
            xOffset); // OK

    mRsaCipherForSquaring.doFinal(tempBuffer, tempOutoffset, Configuration.LENGTH_RSAOBJECT_MODULUS, tempBuffer, tempOutoffset); // OK


    if (JBigInteger.subtract(x, xOffset, Configuration.LENGTH_MODULUS, tempBuffer, tempOutoffset,
            Configuration.LENGTH_MODULUS)) {
        JBigInteger.add(x, xOffset, Configuration.LENGTH_MODULUS, tempBuffer,
                Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
    } 

    mRsaCipherForSquaring.doFinal(eempromTempBuffer, yOffset, Configuration.LENGTH_RSAOBJECT_MODULUS, eempromTempBuffer, yOffset); //OK 


    if (JBigInteger.subtract(x, xOffset, Configuration.LENGTH_MODULUS, eempromTempBuffer, yOffset,
            Configuration.LENGTH_MODULUS)) {

        JBigInteger.add(x, xOffset, Configuration.LENGTH_MODULUS, tempBuffer,
                Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);

    }
    // ((x+y)^2 - x^2 -y^2)/2
    JBigInteger.modular_division_by_2(x, xOffset,Configuration. LENGTH_MODULUS, tempBuffer, Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
    return x;
}


public static boolean add(byte[] x, short xOffset, short xLength, byte[] y,
        short yOffset, short yLength) {
    short digit_mask = 0xff;
    short digit_len = 0x08;
    short result = 0;
    short i = (short) (xLength + xOffset - 1);
    short j = (short) (yLength + yOffset - 1);

    for (; i >= xOffset; i--, j--) {
        result = (short) (result + (short) (x[i] & digit_mask) + (short) (y[j] & digit_mask));

        x[i] = (byte) (result & digit_mask);
        result = (short) ((result >> digit_len) & digit_mask);
    }
    while (result > 0 && i >= xOffset) {
        result = (short) (result + (short) (x[i] & digit_mask));
        x[i] = (byte) (result & digit_mask);
        result = (short) ((result >> digit_len) & digit_mask);
        i--;
    }

    return result != 0;
}
public static boolean subtract(byte[] x, short xOffset, short xLength, byte[] y,
        short yOffset, short yLength) {
    short digit_mask = 0xff;
    short i = (short) (xLength + xOffset - 1);
    short j = (short) (yLength + yOffset - 1);
    short carry = 0;
    short subtraction_result = 0;

    for (; i >= xOffset && j >= yOffset; i--, j--) {
        subtraction_result = (short) ((x[i] & digit_mask)
                - (y[j] & digit_mask) - carry);
        x[i] = (byte) (subtraction_result & digit_mask);
        carry = (short) (subtraction_result < 0 ? 1 : 0);
    }
    for (; i >= xOffset && carry > 0; i--) {
        if (x[i] != 0)
            carry = 0;
        x[i] -= 1;
    }

    return carry > 0;
}



 public short isGreater(byte[] x,short xOffset,short xLength,byte[] y ,short yOffset,short yLength)
    {
        if(xLength > yLength)
            return (short)1;
        if(xLength < yLength)
            return (short)(-1);
        short digit_mask = 0xff;
        short digit_len = 0x08;
        short result = 0;
        short i = (short) (xLength + xOffset - 1);
        short j = (short) (yLength + yOffset - 1);

        for (; i >= xOffset; i--, j--) {
            result = (short) (result + (short) (x[i] & digit_mask) - (short) (y[j] & digit_mask));
            if(result > 0)
                return (short)1;
            if(result < 0)
                return (short)-1;
        }
        return 0;
    }

该代码适用于小数字,但对于较大的数字则失败

The code works well for little number but fails on bigger one

推荐答案

我设法通过改变乘法的数学公式解决了这个问题.我在更新的代码下面发布了.

I managed to solve the problem by changing the mathematical formula of multiplication.I posted below the updated code.

private byte[] multiply(byte[] x, short xOffset, short xLength, byte[] y,
        short yOffset, short yLength,short tempOutoffset)
{
    normalize();
    //copy x value to temporary rambuffer
    Util.arrayFillNonAtomic(tempBuffer, tempOutoffset,(short) (Configuration.LENGTH_RSAOBJECT_MODULUS+tempOutoffset),(byte)0x00);
    Util.arrayCopy(x, xOffset, tempBuffer, (short)(Configuration.LENGTH_RSAOBJECT_MODULUS - xLength), xLength);

    // copy the y value to match th size of rsa_object
    Util.arrayFillNonAtomic(ram_y, IConsts.OFFSET_START, (short) (Configuration.LENGTH_RSAOBJECT_MODULUS-1),(byte)0x00);
    Util.arrayCopy(y,yOffset,ram_y,(short)(Configuration.LENGTH_RSAOBJECT_MODULUS - yLength),yLength);

    Util.arrayFillNonAtomic(ram_y_prime, IConsts.OFFSET_START, (short) (Configuration.LENGTH_RSAOBJECT_MODULUS-1),(byte)0x00);
    Util.arrayCopy(y,yOffset,ram_y_prime,(short)(Configuration.LENGTH_RSAOBJECT_MODULUS - yLength),yLength);

    Util.arrayFillNonAtomic(ram_x, IConsts.OFFSET_START, (short) (Configuration.LENGTH_RSAOBJECT_MODULUS-1),(byte)0x00);
    Util.arrayCopy(x,xOffset,ram_x,(short)(Configuration.LENGTH_RSAOBJECT_MODULUS - xLength),xLength);

    // if x>y
    if(this.isGreater(ram_x, IConsts.OFFSET_START, Configuration.LENGTH_RSAOBJECT_MODULUS, ram_y,IConsts.OFFSET_START, Configuration.LENGTH_MODULUS)>0)
    {

        // x <- x-y
        JBigInteger.subtract(ram_x,IConsts.OFFSET_START,Configuration.LENGTH_RSAOBJECT_MODULUS, ram_y,
                IConsts.OFFSET_START, Configuration.LENGTH_RSAOBJECT_MODULUS);
    }
    else
    {

        // y <- y-x
        JBigInteger.subtract(ram_y_prime,IConsts.OFFSET_START,Configuration.LENGTH_RSAOBJECT_MODULUS, ram_x,
                IConsts.OFFSET_START, Configuration.LENGTH_MODULUS);
         // ramy stores the (y-x) values copy value to ram_x
        Util.arrayCopy(ram_y_prime, IConsts.OFFSET_START,ram_x,IConsts.OFFSET_START,Configuration.LENGTH_RSAOBJECT_MODULUS);

    }

        //|x-y|2
        mRsaCipherForSquaring.init(mRsaPublicKekForSquare, Cipher.MODE_ENCRYPT);
        mRsaCipherForSquaring.doFinal(ram_x, IConsts.OFFSET_START, Configuration.LENGTH_RSAOBJECT_MODULUS, ram_x,
                IConsts.OFFSET_START); // OK

        // x^2
        mRsaCipherForSquaring.doFinal(tempBuffer, tempOutoffset, Configuration.LENGTH_RSAOBJECT_MODULUS, tempBuffer, tempOutoffset); // OK

        // y^2
        mRsaCipherForSquaring.doFinal(ram_y,IConsts.OFFSET_START, Configuration.LENGTH_RSAOBJECT_MODULUS, ram_y,IConsts.OFFSET_START); //OK 



        if (JBigInteger.add(ram_y, IConsts.OFFSET_START, Configuration.LENGTH_MODULUS, tempBuffer, tempOutoffset,
                Configuration.LENGTH_MODULUS)) {
              // y^2 + x^2 
            JBigInteger.subtract(ram_y, IConsts.OFFSET_START, Configuration.LENGTH_MODULUS, tempBuffer,
                    Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
        } 


        //  x^2 + y^2
        if (JBigInteger.subtract(ram_y, IConsts.OFFSET_START, Configuration.LENGTH_MODULUS, ram_x, IConsts.OFFSET_START,
                Configuration.LENGTH_MODULUS)) {

            JBigInteger.add(ram_y, IConsts.OFFSET_START, Configuration.LENGTH_MODULUS, tempBuffer,
                    Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
    }
    // (x^2 + y^2 - (x-y)^2)/2
   JBigInteger.modular_division_by_2(ram_y, IConsts.OFFSET_START,Configuration. LENGTH_MODULUS, tempBuffer, Configuration.TEMP_OFFSET_MODULUS, Configuration.LENGTH_MODULUS);
   return ram_y;
}

问题在于,对于相同数字 ab 在 1024 位上的某些数字,总和 a+b 克服了值 p 的模数.在上面的代码中,我从 a+b 中减去 p 值以使 RSA 正常工作.但这不是数学上的东西正确,因为 (a+b)^2 mod p((a+b) mod p)^2 mod p 不同.通过将公式从 ((x+y)^2 -x^2 -y^2)/2 更改为 (x^2 + y^2 - (xy)^2)/2 我确信我永远不会溢出,因为 ab 小于 p.基于 上面的链接 我改变了将所有操作移至 RAM 中的代码.

The problem was that for some numbers for same numbers a and b on 1024 bits the sum a+b overcome the value p of the modulus.In above code I subtract from a+b the p value in order to make the RSA functioning.But this thing is not mathematically correct because (a+b)^2 mod p is different from ((a+b) mod p)^2 mod p . By changing the formula from ((x+y)^2 -x^2 -y^2)/2 to (x^2 + y^2 - (x-y)^2)/2 I was sure I will never have overflow because a-b is smaller than p. Based on link above I changed the code moving all the operations in RAM.

这篇关于使用 RSA 进行模乘会导致 Java Card 出错的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

How to send data to COM PORT using JAVA?(如何使用 JAVA 向 COM PORT 发送数据?)
How to make a report page direction to change to quot;rtlquot;?(如何使报表页面方向更改为“rtl?)
Use cyrillic .properties file in eclipse project(在 Eclipse 项目中使用西里尔文 .properties 文件)
Is there any way to detect an RTL language in Java?(有没有办法在 Java 中检测 RTL 语言?)
How to load resource bundle messages from DB in Java?(如何在 Java 中从 DB 加载资源包消息?)
How do I change the default locale settings in Java to make them consistent?(如何更改 Java 中的默认语言环境设置以使其保持一致?)