Python tarfile 比 Linux 命令慢

Python tarfile slow than Linux command(Python tarfile 比 Linux 命令慢)
本文介绍了Python tarfile 比 Linux 命令慢的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我尝试了不同的方式来压缩文件夹.我的理解是 Python 内置模块总是比 subprocess.call("Linux command") 快.但我只是做了一些演示.tarfile 模块比 subprocess.call("tar") 慢.有人可以向我解释一下吗?

I tried the different way to zip folder.My understanding is that Python built-in module always faster than subprocess.call("Linux command"). But I just did some demo. The tarfile module is slow than subprocess.call("tar").Can someone explain it to me?

    #!/usr/bin/python

import os
import time
import tarfile
import subprocess

tStart1 = time.time()

TestFolder = ["Jack", "Robin"]
for folder in TestFolder:
    name = "/mnt/ShareDrive/Share/ExistingUsers/"+folder
    path = "/mnt/TEST2/"
    tar = tarfile.open(path+folder+".tar.gz", "w:gz")
    tar.add(name)
    tar.close()
tEnd1 = time.time()

time.sleep(2)

tStart2 = time.time()
for folder in TestFolder:
    path = "/mnt/TEST1/"
    subprocess.call(["tar", "zcvf", path+folder+".tar.gz", "-P", "/mnt/ShareDrive/Share/ExistingUsers/"+folder])
tEnd2 = time.time()

print "The module cost %f sec" % (tEnd1 - tStart1)
print "The subprocess cost %f sec" % (tEnd2 - tStart2)

tarfile 模块耗时 63 秒.子流程仅需 32 秒.

The tarfile module cost 63 sec. The subprocess cost only 32 sec.

两个文件夹的总大小为 433 MB

The total size of two folders is 433 MB

推荐答案

tar 是用 C 语言编写的.tarfile 模块是 tar 处理的纯 Python 实现.模块不可能比命令快.

tar is written in C. The tarfile module is a pure Python implementation of tar handling. There is no way that the module will be faster than the command.

这篇关于Python tarfile 比 Linux 命令慢的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)