在 Python 中合并和排序日志文件

Merging and sorting log files in Python(在 Python 中合并和排序日志文件)
本文介绍了在 Python 中合并和排序日志文件的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我对 python 完全陌生,但我遇到了一个无法解决的严重问题.

I am completely new to python and I have a serious problem which I cannot solve.

我有几个结构相同的日志文件:

I have a few log files with identical structure:

[timestamp] [level] [source] message

例如:

[Wed Oct 11 14:32:52 2000] [error] [client 127.0.0.1] error message

我需要用纯 Python 编写一个程序,它将这些日志文件合并到一个文件中,然后按时间戳对合并后的文件进行排序.在此操作之后,我希望将此结果(合并文件的内容)打印到 STDOUT(控制台).

I need to write a program in pure Python which should merge these log files into one file and then sort the merged file by timestamp. After this operation I wish to print this result (the contents of the merged file) to STDOUT (console).

我不明白该怎么做,希望得到帮助.这可能吗?

I don't understand how to do this would like help. Is this possible?

推荐答案

你可以这样做

import fileinput
import re
from time import strptime

f_names = ['1.log', '2.log'] # names of log files
lines = list(fileinput.input(f_names))
t_fmt = '%a %b %d %H:%M:%S %Y' # format of time stamps
t_pat = re.compile(r'[(.+?)]') # pattern to extract timestamp
for l in sorted(lines, key=lambda l: strptime(t_pat.search(l).group(1), t_fmt)):
    print l,

这篇关于在 Python 中合并和排序日志文件的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)