• <i id='eSQJp'><tr id='eSQJp'><dt id='eSQJp'><q id='eSQJp'><span id='eSQJp'><b id='eSQJp'><form id='eSQJp'><ins id='eSQJp'></ins><ul id='eSQJp'></ul><sub id='eSQJp'></sub></form><legend id='eSQJp'></legend><bdo id='eSQJp'><pre id='eSQJp'><center id='eSQJp'></center></pre></bdo></b><th id='eSQJp'></th></span></q></dt></tr></i><div id='eSQJp'><tfoot id='eSQJp'></tfoot><dl id='eSQJp'><fieldset id='eSQJp'></fieldset></dl></div>

    <tfoot id='eSQJp'></tfoot>
  • <small id='eSQJp'></small><noframes id='eSQJp'>

        <legend id='eSQJp'><style id='eSQJp'><dir id='eSQJp'><q id='eSQJp'></q></dir></style></legend>
          <bdo id='eSQJp'></bdo><ul id='eSQJp'></ul>

        Matplotlib imshow 和 kivy

        Matplotlib imshow and kivy(Matplotlib imshow 和 kivy)

        <small id='uQEea'></small><noframes id='uQEea'>

        1. <i id='uQEea'><tr id='uQEea'><dt id='uQEea'><q id='uQEea'><span id='uQEea'><b id='uQEea'><form id='uQEea'><ins id='uQEea'></ins><ul id='uQEea'></ul><sub id='uQEea'></sub></form><legend id='uQEea'></legend><bdo id='uQEea'><pre id='uQEea'><center id='uQEea'></center></pre></bdo></b><th id='uQEea'></th></span></q></dt></tr></i><div id='uQEea'><tfoot id='uQEea'></tfoot><dl id='uQEea'><fieldset id='uQEea'></fieldset></dl></div>
              <tfoot id='uQEea'></tfoot>

                <bdo id='uQEea'></bdo><ul id='uQEea'></ul>
              • <legend id='uQEea'><style id='uQEea'><dir id='uQEea'><q id='uQEea'></q></dir></style></legend>
                    <tbody id='uQEea'></tbody>
                  本文介绍了Matplotlib imshow 和 kivy的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有一个 3D numpy 数组,代表一个 3D 断层图像 I = [i,j,k].

                  我开始学习 kivy,因为我需要做一个简单的 GUI,该 GUI 由一个 2D 图像查看器组成,用于 3D (s = [i,:,:]) 图像的每个切片和一个用于跨平面移动的切片器.

                  我通常通过 matplotlib 执行所有可视化,我认为最简单的方法是将 matplotlib 连接到 kivy.我该怎么做?我看到另一个问题,它提出了类似的问题,但仅限于绘图功能,并且该方法似乎不适用于 imshow.(

                  I have a 3D numpy array, representing a 3D tomographic image I = [i,j,k].

                  I started to learn kivy as I need to do a simple GUI consisting of a 2D image viewer for each slice of the 3D (s = [i,:,:]) image and a slicer to move across planes.

                  I usually perform all visualization via matplotlib and I tough that the easiest way will be to connect matplotlib to the kivy. How can I do it? I saw another question which ask a similar question, but only with the plot function, and the methodology does not seems to work for imshow. (How to get started/use matplotlib in kivy).

                  Any suggestions?

                  Thanks,

                  解决方案

                  Please refer to the example for details.

                  Example

                  main.py

                  from kivy.garden.matplotlib.backend_kivyagg import FigureCanvasKivyAgg
                  from kivy.app import App
                  from kivy.uix.boxlayout import BoxLayout
                  import matplotlib.pyplot as plt
                  import matplotlib.image as mpimg
                  
                  
                  img = mpimg.imread('ac013.JPG')
                  lum_img = img[:, :, 0]
                  plt.imshow(lum_img, cmap="nipy_spectral")
                  plt.colorbar()
                  
                  
                  class TestApp(App):
                      title = "Kivy Garden Matplolib & imshow()"
                  
                      def build(self):
                          box = BoxLayout()
                          box.add_widget(FigureCanvasKivyAgg(plt.gcf()))
                          return box
                  
                  
                  if __name__ == "__main__":
                      TestApp().run()
                  

                  Output

                  这篇关于Matplotlib imshow 和 kivy的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                  Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)
                    <bdo id='peGE3'></bdo><ul id='peGE3'></ul>
                  • <i id='peGE3'><tr id='peGE3'><dt id='peGE3'><q id='peGE3'><span id='peGE3'><b id='peGE3'><form id='peGE3'><ins id='peGE3'></ins><ul id='peGE3'></ul><sub id='peGE3'></sub></form><legend id='peGE3'></legend><bdo id='peGE3'><pre id='peGE3'><center id='peGE3'></center></pre></bdo></b><th id='peGE3'></th></span></q></dt></tr></i><div id='peGE3'><tfoot id='peGE3'></tfoot><dl id='peGE3'><fieldset id='peGE3'></fieldset></dl></div>

                      <tbody id='peGE3'></tbody>

                          <legend id='peGE3'><style id='peGE3'><dir id='peGE3'><q id='peGE3'></q></dir></style></legend>
                        • <tfoot id='peGE3'></tfoot>

                          <small id='peGE3'></small><noframes id='peGE3'>