为什么在 python 中非常大的浮点值之间的比较会失败?

2023-11-08Python开发问题
4

本文介绍了为什么在 python 中非常大的浮点值之间的比较会失败?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

据我了解,sys.float_info.max 是最大可能的浮点值.但是,似乎无法比较如此大的值.

In my understanding, sys.float_info.max is the largest possible float value. However, it seems that comparing such large values fail.

import math
import sys

m = sys.float_info.max                        # type 'float'

m == m                                        # True
m < m                                         # False
m > m                                         # False

m == m-1.0                                    # True
m < m-1.0                                     # False
m > m-1.0                                     # False

m == m-1e100                                  # True
m < m-1e100                                   # False
m > m-1e100                                   # False

m == m-1e300                                  # False
m > m-1e300                                   # True
m < m-1e300                                   # False

我认为这是因为精度有限?如果可以,在什么数值范围内可以安全操作?

I assume that's because of the limited precision? If so, in what numerical range can i operate safely?

以上代码使用 Python 3.5.2 运行.

推荐答案

在运行 Python 的典型机器上,有 53 位精度可用于 Python 浮点数.如果您尝试更进一步,Python 会消除最小的部分,以便正确表示数字.

On a typical machine running Python, there are 53 bits of precision available for a Python float. If you try to go further, Python will eliminate the smallest part so the number can be properly represented.

因此,值 1 被吸收或取消,以便能够表示您尝试计算的高值.

So the value 1 is absorbed or cancelled to be able to represent the high value you're trying to compute.

限制是通过减去(或添加)乘以float epsilon的值来获得的.

The limit is obtained by subtracting (or adding) the value multiplied by float epsilon.

在我的机器上:

maxfloat == 1.7976931348623157e+308
epsilon == 2.220446049250313e-16

示例测试代码

import math
import sys

m = sys.float_info.max                        # type 'float'
eps = sys.float_info.epsilon

print(m == m-(m*(eps/10)))   # True
print(m == m-(m*eps))        # False

m*eps 是您必须减去以使比较失败的最小值.它总是相对于 m 值.

m*eps is the smallest value you have to subtract to make comparison fail. It's always relative to the m value.

这篇关于为什么在 python 中非常大的浮点值之间的比较会失败?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11